Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomagnetism in X-ray Light

23.03.2017

Today’s most advanced scanning X-ray microscope is operated by the Max Planck Institute for Intelligent Systems at Helmholtz Zentrum Berlin.

The MAXYMUS scanning X-ray microscope has its home at Berlin’s synchrotron radiation source BESSY II at Helmholtz Zentrum Berlin. Scientific support is provided by Dr. Markus Weigand from the “Modern Magnetic Systems” department at the Max Planck Institute for Intelligent Systems (MPI-IS) under the management of Professor Dr. Gisela Schütz.


Left: X-ray microscope image of a magnetic skyrmion. Right: Snapshot of the spin waves generated by a magnetic plate excited by microwaves (red: magnetization fully directed upward, blue: downward)

© MPI-IS Stuttgart

MAXYMUS stands for “MAgnetic X-raY Micro and UHV Spectroscope”. The special fea-tures of this scanning X-ray microscope are its variable specimen environment and broad application spectrum. “It makes it possible to observe ultra-fast processes at 20 times better resolution compared to an optical microscope,” explains Professor Dr. Gisela Schütz.

“In addition to this combination of spatial and temporal resolution, the extremely high sensitivity to the magnetism of nanostructures is unique.” In the field of studying the magnetization dynamics of nanostructures, the department holds the world record in this combination of time (10 picoseconds, i.e. 100 billion images per econd) and spatial resolution (15 nanometers = 0.000,015 mm).

“With MAXYMUS, our users are provided extremely attractive experimentation options, and not only in the area of magnetism,” says Dr. Markus Weigand, who as Max Planck Group Leader in Berlin is responsible for the management and continuous further development of the X-ray microscope.

Researchers in other fields, who for example want to investigate the composition of harmful substance particles in the atmosphere or the photochemistry of endoscopic lithium battery particles, find answers to burning questions here as well. External users can also access the services of MAXYMUS by application. This has led to long standing cooperation with numerous scientists from various research institutions, and the demand for booking MAXYMUS “beamtime” is continuously growing.

In the field of nanomagnetism in particular, exciting new phenomena and technology concepts that can only be “illuminated” with the required speed and spatial resolution in MAXYMUS have recently been causing a stir. Successful cooperation between Max Planck researchers and external scientists, for example at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), University of Mainz, the Paul-Scherrer Institute in Villingen, Switzerland and the CNRS in Paris led to several high-ranking publications in the renowned journals Nature Physics, Nature Materials, and Nature Nanotechnology in 2016.

They contain fundamental studies in the field known as magnonics. Ultra-fast short-wavelength spin waves (in the magnons particle structure) are intended to enable energy-saving data processing that can be controlled with today’s sophisticated microwave technology. “Making these spin waves visible, comparable to waves made by a stone that drops into water, is very impressive even for a scientist,” explains Dr. Sebastian Wintz of PSI in Villigen, Switzerland (see figure).

Observing the emergence and manipulation of what are known as skyrmions, magnetic vortexes that behave like particles of finite mass and can be controlled with minimal currents, is just as spectacular (see figure). Here too the relevance for future applications in the field of information technology is hotly discussed in countless contributions at corresponding international conferences. Kai Litzius, postgraduate at the chair of Prof. Kläui in Mainz, explains: “By being able to observe the movement of the smallest individual skyrmions, we gain important knowledge about their fundamental magnetic interactions.”

The accuracy of MAXYMUS can be improved by magnitudes with the planned reduction of the length of X-ray light pulses to be realized by BESSY II in the coming years and the significantly greater spatial resolution by using the scattering of X-rays. “Fundamentally, today’s attractive possibilities still harbor the potential for significant optimization. We are still far from reaching the physical limits,” Dr. Markus Weigand predicts.

Publications:

S. Wintz, V. Tiberkevich, M. Weigand, J. Raabe, J. Lindner, A. Erbe, A. Slavin, J. Fass-bender, “Magnetic vortex cores as tunable spin-wave emitters”,
Nature Nanotechnology, 2016, (DOI: 10.1038/nnano.2016.117)

Kai Litzius, Ivan Lemesh, Benjamin Krüger, Pedram Bassirian, Lucas Caretta, Kornel Richter Felix Büttner, Koji Sato, Oleg A. Tretiakov, Johannes Förster, Robert M. Reeve, Markus Weigand, Iuliia Bykova, Hermann Stoll, Gisela Schütz, Geoffrey S.D. Beach and Mathias Kläui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy”, Nature Physics, 2017 (DOI: 10.1038/nphys4000)

Seonghoon Woo, Kai Litzius, Benjamin Krüger, Mi-Young Im, Lucas Caretta, Kornel Rich-ter, Maxwell Mann, Andrea Krone, Robert M. Reeve, Markus Weigand, Parnica Agrawal, Ivan Lemesh, Mohamad-Assaad Mawass, Peter Fischer, Mathias Kläui and Geoffrey S.D. Beach, “Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets”
Nature Materials, 2016 (DOI: 10.1038/nmat4593)

C. Moreau-Luchaire, C.Moutafis, N. Reyren, J.Sampaio, C.A.F. Vaz, N.Van Horne, K. Bouzehouane, K.Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J.-M. George, M. Weigand, J.Raabe, V.Cros and A.Fert, “Additive interfacial chiral interaction in multi-layers for stabilization of small individual skyrmions at room temperature”
Nature Nanotechnology, 2016 (DOI: 10.1038/nnano.2015.313)

Weitere Informationen:

http://www.is.mpg.de/schuetz

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme
Further information:
http://www.is.mpg.de

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>