Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of Turbulent Density Fluctuations Explained

22.10.2009
Scientists at The University of Alabama in Huntsville have developed a three-dimensional simulation model to understand behavior of interplanetary charged particles in space.

Physics professors Dastgeer Shaikh and Gary Zank of the university’s Center for Space Plasma and Aeronomic Research and Department of Physics said the model explains how density of the interplanetary particles varies in time and space. Remarkably, the distribution of scale sizes of the density fluctuations is observed to satisfy a universal law called the Kolmogorov-spectrum.

The researchers noted that interplanetary space surrounding Earth is filled up by randomly moving charged and uncharged particles. These particles originate essentially from stars like our Sun or other nearby stars and are accelerated through interplanetary space. These are real “micro-probes” that tell us about distance, composition and many important aspects of the distant cosmological objects such as neighboring stars, galaxies and massive astrophysical clouds.

“From the behavior of these particles in space, it is possible to know the extent of the physical universe,” they explained. “We provide a simpler explanation of why should particle density follow a Kolmogorov-spectrum. The interplanetary space is like water or air surrounding us. The charged particles are tied to the mass-less rope of magnetic field lines and move around in water in a random manner. Something similar to “cream in a cup of coffee” or particles of ‘baby talcum powder’ spread on the surface of stirred water that convects the particles of powder along with the water flow. We find that these particles follow a Kolmogorov-spectrum. We are trying to understand their motion statistically.”

NASA's Voyager 2 spacecraft, cruising in the outer space for nearly 30 years, has tracked down the interplanetary particle density from our Sun to a distance up to 100 times the distance between the Sun and Earth. That is 93.7 million miles multiplied by 100. “It was found that the particle density varies with distance by a Kolmogorov-spectrum. But one of the major hurdles in understanding this spectrum is interplanetary turbulence that makes the particle's trajectory random in space and time,” the scientists said.

The original theoretical effort behind this model was laid down in early 1990s by Dr. Zank, who had put forward "a truly amazing hypothesis" that related the density to velocity of these turbulent particles, according to Dr. Shaikh. “It took us nearly 20 years to computationally realize the truth behind Zank's model. We run our higher resolution computational model on San Diego supercomputer (256 processors) to arrive at this conclusion. Our model is also consistent with Voyager's observations.”

Drs. Zank and Shaikh said it’s important to know correct statistical behavior of the interplanetary particle density. “Some of the techniques (like angular broadening) are based on density variations to measure the distance of stellar objects from Earth. Precise measurement of density field is critical to determine exact location, age, and composition of the stellar bodies,” they said.

Their research will appear in the November issue of the Royal Astronomical Society's journal.

Ray Garner | Newswise Science News
Further information:
http://www.uah.edu

More articles from Physics and Astronomy:

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>