Mystery of bat with an extraordinary nose solved

The article, “Acoustic effects accurately predict an extreme case of biological morphology,” by Z. Zhang, R. Müller, and S.N. Truong, details the adult Bourret's horseshoe bat (known scientifically as the “Rhinolophus paradoxolophus,” meaning paradoxical crest), and it's roughly 9 millimeters in length nose.

The typical horseshoe bat's nose is half that long, said Rolf Mueller, an associate professor with the Virginia Tech mechanical engineering department and director for the Bio-inspired Technology (BIT) Laboratory in Danville, Va. “This nose is so much larger than anything else,” among other bats of the region, he said.

Mueller's findings show that the bat uses its elongated nose to create a highly focused sonar beam. Bats detect their environment through ultrasonic beams, or sonar, emitted from their mouths — or noses, as in the case of the paradoxolophus bat. The echoes of the sound wave convey a wealth of information on objects in the bat's environment. This bat from the remote rainforests of South East Asia received its name 58 years ago because of its mysterious trait.

Much like a flashlight with an adjuster that can create an intense but small beam of light, the bat's nose can create a small but intense sonar beam. Mueller and his team used computer animation to compare varying sizes of bat noses, from small noses on other bats to the large nose of the paradoxolophus bat. In what Mueller calls a perfect mark of evolution, he says his computer modeling shows the length of the paradoxolophus bat's nose stops at the exact point the sonar beam's focal point would become ineffective.

“By predicting the width of the ultrasonic beam for each of these nose lengths with a computational method, we found that the natural nose length has a special value: All shortened noses provided less focus of the ultrasonic beam, whereas artificially elongated noses provided only negligible additional benefits,” Mueller said. “Hence, this unusual case of a biological shape can be predicted accurately from its physical function alone.”

The findings with the paradoxolophus bat are part of a larger study of approximately 120 different bat species and how they use sonar to perceive their environment. Set to finish in February 2010, it is hoped the study's focus on wave-based sensing and communication in bats will help spur groundwork for innovations in cell phone and satellite communications, as well as naval surveillance technology.

Mueller worked on the study with engineers and scientists from China's Shandong University, where he held a professorship when the research project began, and the Vietnamese Academy of Sciences. The article will appear in Physical Review Letters' print edition on July 17 and on the Web site on July 14.

Mueller has focused much of his research career in bio-inspired technology studying bats. He received a Ph.D. in 1998 at the University of Tuebingen, Germany, where he developed computational models for the biosonar system of bats. During postdoctoral research at Yale University, he worked on biosonar-inspired autonomous robots and statistical signal processing methods in natural outdoor environments. In 2000, he returned to Tuebingen University, where he built a lab to develop robots inspired by bats. In 2003, he joined The Maersk Institute of Production Technology at the University of Southern Denmark as an assistant professor, followed by a professorship at Shandong University. He joined the Virginia Tech faculty in 2008.

The College of Engineering (www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 5,700 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 1,800 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Learn more about Dr. Mueller at www.me.vt.edu/people/faculty/Mueller.html

Learn more about the Bio-inspired Technology Laboratory at www.ialr.org/research/bio-inspired-technology-laboratory

Media Contact

Steven Mackay EurekAlert!

More Information:

http://www.vt.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors