Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU researchers lead team that observes exotic radioactive decay process

27.09.2019

Researchers from the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) and TRIUMF (Canada's national particle accelerator) have observed a rare nuclear decay. Namely, the team measured low-kinetic-energy protons emitted after the beta decay of a neutron-rich nucleus beryllium-11. The research team presented their results in an article recently published in Physical Review Letters.

An atomic nucleus with many more neutrons than protons is neutron-rich and unstable. It will get rid of excess neutrons to become stable through the beta-decay process. Beta decay is common in atomic nuclei. In this process, the nucleus emits a beta particle and transforms a neutron into a proton, or a proton into a neutron.


This is an artist's depiction of the beta-delayed proton emission of beryllium-11 measured with the Active Target Time Projection Chamber. The proton track is indicated.

Credit: National Superconducting Cyclotron Laboratory


Yassid Ayyad, detector systems physicist at the National Superconducting Cyclotron Laboratory at Michigan State University, is part of the research team that observed a rare decay in the exotic beryllium-11 nucleus. Here he holds the pad plane of the Active Target Time Projection Chamber detector that was used in the experiment.

Credit: National Superconducting Cyclotron Laboratory

Less common is proton emission following beta decay of a neutron-rich nucleus. Beta-delayed proton emission, observed more than 40 years ago, typically occurs in proton-rich nuclei.

For neutron-laden nuclei, it defies laws of energy to emit protons after beta decay unless the neutrons are loosely bound and essentially free. This condition may be fulfilled in so-called halo nuclei, where one or two neutrons orbit the remaining core at a considerable distance.

"There are few neutron-rich nuclei for which the elusive proton emission following beta decay can happen," said Yassid Ayyad, detector systems physicist at NSCL, who is part of the research team that observed the rare decay.

"Beryllium-11 is the most promising one. It becomes beryllium-10 after beta decay to boron-11 and the subsequent proton emission. The exotic radioactive decay we observed represents a new challenge for the understanding of exotic nuclei, in particular for halo nuclei."

According to experiments at the Isotope mass Separator On-Line (ISOLDE) facility at the European Organization for Nuclear Research (CERN) and the Vienna Environmental Research Accelerator (VERA) facility in Vienna, the probability of the beta-delayed proton emission in a neutron-rich nucleus is unexpectedly high.

Researchers did not directly observe protons coming from the beryllium-11 decay. This has led to speculations involving an extremely exotic decay. Instead of emitting a proton, the halo neutron would be transformed into an undetectable dark-matter particle.

Dark matter is an unseen hypothetical substance. It may consist of exotic particles that do not interact with normal matter or light but still exert a gravitational pull.

Ayyad emphasized the significance of this speculation. "This scenario, if confirmed, would represent the first indirect observation of dark matter," he said.

The ISOLDE/VERA team suggested another, less exotic, explanation of the high decay rate. It involves a narrow resonance in boron-11 close to the energy threshold where the nucleus is allowed to emit a proton. This scenario is reminiscent of the discovery of the Hoyle state, an excited state of carbon-12 that is very close to the alpha-particle separation energy, the energy threshold about which the nucleus can emit an alpha particle (helium-4). Astronomer Fred Hoyle first proposed this state in 1954 to explain the production of carbon in stars.

"One of the most exciting outcomes of this work is that the proton emission proceeds through a highly-excited, narrow resonance state in the boron-11 nucleus," Ayyad said, thus confirming the "Hoyle-like" scenario involving the threshold resonance.

The team used the Active Target Time Projection Chamber (AT-TPC) developed at NSCL to perform the experiment. This gas-filled detector has a very large detection probability and provides the energy of the particle with high accuracy and precision. The detector delivers a three-dimensional image of the charged particles emitted in the beryllium-11 decay, including information about their energy. The TRIUMF Isotope Separator and Accelerator facility delivered a beryllium-11 beam. Experimenters implanted the beam in the middle of the detector to capture its decay modes. The beryllium-11 decayed into beryllium-10 and a proton, with a narrow energy distribution only 0.0013 percent of the time. The beryllium-10, together with the decay proton, is thought to form a boron-11 nucleus with high-excitation energy that exists during a brief period of time.

This research is of interest for future studies. The AT-TPC and the intense rare-isotope beams provided by the Facility for Rare Isotope Beams (FRIB) at MSU will make it feasible to characterize this new resonance and find other, more exotic particle emitters.

###

The National Science Foundation's National Superconducting Cyclotron Laboratory is a center for nuclear and accelerator science research and education. It is the nation's premier scientific user facility dedicated to the production and study of rare isotopes.

MSU is establishing FRIB as a new scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. Under construction on campus and operated by MSU, FRIB will enable scientists to make discoveries about the properties of rare isotopes in order to better understand the physics of nuclei, nuclear astrophysics, fundamental interactions, and applications for society, including in medicine, homeland security and industry.

Media Contact

Karen King
kingk@frib.msu.edu
517-908-7262

http://www.frib.msu.edu  

Karen King | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.123.082501

Further reports about: Accelerator Beams MSU NSCL detector isotopes nuclei radioactive decay

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>