Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy

14.08.2018

Fornax UCD3 is a part of a Fornax galaxy cluster and belongs to a very rare and unusual class of galaxies - ultracompact dwarfs. The mass of such dwarf galaxies reaches several dozen millions of solar masses and the radius, typically, does not exceed three hundred light years. This ratio between mass and size makes UCDs the densest stellar systems in the Universe.

"We have discovered a supermassive black hole in the center of Fornax UCD3. The black hole mass is 3.5 million that of the Sun, similar to the central black hole in our own Milky Way" explained Anton Afanasiev, the first author of the article, a student of the department of the Faculty of Physics, MSU.


An optical image of the giant elliptical galaxy NGC 1399 and its satellite UCD3. Left panel: the image of UCD3 in F606W filter obtained by Hubble telescope. Right panel: an infrared image of UCD3 obtained using the SINFONI spectrograph.

Courtesy of NASA/STScI/ESO/Afanasiev et al.

In the course of the study the scientists used the data collected with SINFONI, an infrared integral field spectrograph installed at one of the 8-m VLT telescopes in Chile operated by the European Southern Observatory.

Having analyzed the observed spectra, the authors derived the dependence between stellar velocity dispersion and radius in Fornax UCD3. Velocity dispersion quantifies the average variation between the individual stellar line-of-sight velocity and the mean velocity of the entire stellar population.

In the presence of a massive body such as a black hole the stars are influenced by its gravity and accelerate in various directions. Due to that their average speed does not grow but the dispersion increases considerably. This is the very effect that was observed in this galaxy: the velocity dispersion in its center is so high that it can only be explained by the presence of a massive central black hole.

After that the scientists compared the dependence of velocity and dispersion with dynamic models based on different assumptions of the black hole mass. They found that the model suggesting the mass of the black hole being equal to 3.5 million solar masses agreed with the observations best. They also considered the possibility that no black hole was present there at all, but that hypothesis was excluded with the statistical significance of (99.7%).

The black hole discovered by the authors is the fourth ever to be found in UCDs and corresponds to 4% of the total galaxy mass. In "normal" galaxies this ratio is considerably lower (about 0.3%). Despite there are few known examples, the existence of massive black holes in UCDs is a strong argument for the tidal origin of such galaxies.

According to this hypothesis, an average-sized galaxy passed a bigger and more massive one on a certain stage of its evolution and as a result of influence of tidal forces lost the majority of its stars. The remaining compact nucleus has become what we know as an ultracompact dwarf.

"To be able to say with complete assurance that this hypothesis is correct, we need to discover more supermassive black holes in UCDs. This is one of the prospects of this work.

Moreover, a similar methodology may be applied to more massive and less dense compact elliptical galaxies. In one of our next works we will study the population of central black holes in objects of this kind," concluded the scientist.

###

The work was carried out in collaboration with the scientists from the European Southern Observatory (Germany and Chile), Max Planck Institute for Astronomy, Institute for Astrophysics Potsdam (Germany), University of Michigan, San Jose State University, Texas A&M University, University of Utah, University of California (USA), Australian Astronomical Observatory, Macquarie University, University of Queensland (Australia), as well as from Swiss Federal Institute of Technology Zurich.

Media Contact

Yana Khlyustova
science-release@rector.msu.ru

http://www.msu.ru 

Yana Khlyustova | EurekAlert!

More articles from Physics and Astronomy:

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Lifting the veil on the black hole at the heart of our Galaxy
21.01.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>