Moving forward, spin goes sideways

Building electronic devices that work without needing to actually transport electrons is a goal of spintronics researchers, since this could lead to: reduced power consumption, lower levels of signal noise, faster operation, and denser information storage. However, the generation of pure spin currents remains a challenge.

Now, YoshiChika Otani and colleagues at the RIKEN Advanced Science Institute, Wako, and five other research institutes in Japan and China, have produced a large spin current in an important spintronic device called a lateral spin valve.

Spintronic devices store information in the spin of electrons, rather than in their density or energy level. Information flows through the propagating waves of spin orientation, while electrical charges remain stationary. Inside a lateral spin valve, a current of electron spins—but not of electron charges—is injected into a nonmagnetic wire through a ferromagnetic contact.

The current travels down the wire, and creates an output voltage across a second ferromagnetic contact, which serves as the output of the device. This lateral arrangement is important because it allows charge and spin currents to flow independently and permits the use of multiple terminals. However, while a practical lateral spin valve would require a large output voltage, previous devices had produced only 1 microvolt or less.

To increase the output voltage of their device, Otani and colleagues concentrated on the quality of the junction between the two ferromagnetic contacts and the non-magnetic, silver wire. Between the wire and the ferromagnets made of nickel and iron, the researchers placed a thin layer of magnesium oxide, which served to increase the efficiency of spin injection. They found that the straightforward annealing of their device at 400 °C in a mostly nitrogen environment reduced the quantity of oxygen in this interfacial layer.

This lowered junction resistance by a factor of up to 1,000, and increased the efficiency of spin injection into the silver wire. As a result, the output voltage reached 220 microvolts, which is more than 100 times greater than that of existing devices. In addition, the research team was able to observe the injected spins rotating, of what is technically known as precessing, in response to a magnetic field along the entire length of their 6-micrometer silver wire, confirming high spin injection efficiency.

The spin valve could be further improved, says Otani, by using cobalt–iron ferromagnets, which are known to have greater spin injection efficiency than nickel–iron, with potential near-term application as sensors in high-density magnetic media.

The corresponding author for this highlight is based at the Quantum Nano-Scale Magnetics Team, RIKEN Advanced Science Institute

Reference:
Fukuma, Y., Wang, L., Idzuchi, H., Takahashi, S., Maekawa, S. & Otani, Y. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nature Materials 10, 527–531 (2011).

Media Contact

gro-pr Research asia research news

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors