Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most metal-poor star hints at universe's first supernovae

25.09.2014

A team of researchers, led by Miho N. Ishigaki, at the Kavli IPMU, The University of Tokyo, pointed out that the elemental abundance of the most iron-poor star can be explained by elements ejected from supernova explosions of the universe’s first stars. Their theoretical study revealed that massive stars, which are several tens of times more immense than the Sun, were present among the first stars. The presence of these massive stars has great implications on the theory of star formation in the absence of heavy elements.

Iron-poor stars provide insight about the very early universe where the first generation of stars and galaxies formed. The recent discovery of the most iron-poor star SMSS J031300.36-670839.3 (SMSS J0313-6708) was big news in early 2014, especially for astronomers working on the so-called “Galactic archaeology”.    


Artist's conception of a supernova of a first star with jets.

(credit:Kavli IPMU)

When the universe first began, only light elements such as hydrogen and helium existed. As these first stars ended their short but wild lives, the universe became enriched with heavy elements, which are essential to form the materials found on Earth, including humans. Hence, iron-poor stars are much older than the Sun, and were born when the universe only contained trace amounts of heavy elements.

SMSS J0313-6708 is the most iron-poor star ever found. Its spectrum lacks iron absorption lines. The estimated upper limit for its iron abundance is about a ten-millionth of that of the Sun, and its iron content is about hundred times lower than the previous record for the most iron-poor star.

“We received the news of the most iron-poor star with a great excitement,” Ken’ichi Nomoto at the Kavli IPMU says, “since this star may be the oldest fossil record and may elucidate the unknown nature of the first stars.” The first stars, which formed in the early universe, likely had a large impact on their environments. For example, the strong ultra-violet light emitted by the first stars helped ionize the early universe. In addition, their supernova explosions ejected heavy elements that have helped form subsequent generations of stars and galaxies.

“The impact of these stars on the surrounding environment depends critically on their masses when they were born,” Ishigaki says. “However, direct observational constraints of the first stars’ masses are not available since most of them likely died out a long, long time ago.”

 Due to its unusual chemical composition, some astrophysicists have speculated that SMSS J0313-6708 was born from the gas enriched by a first star, which has a mass 60 times that of the Sun, and synthesized a small amount of calcium through a special nucleosynthesis.

On the other hand, Ishigaki’s team focused on its very large carbon enhancement relative to iron and calcium. Previous studies by Nozomu Tominaga at Konan University/Kavli IPMU suggested that such a feature is consistent with a supernova in which the synthesized elements fall back. However, the question was whether this scenario can also explain the most extreme abundance pattern in SMSS J0313-6708, the most iron-poor star.

The team compared the observed abundances and theoretical calculations of the elements ejected by the supernova of first stars with masses 25 and 40 times that of the Sun. They concluded that the observed abundance pattern can be reproduced if stars with those masses undergo a special type of supernova in which most of the ejected matter falls back to the central remnant. A highly asymmetric explosion involving a jet-like feature should produce this type of supernova. As a consequence of the jet, iron and calcium, which are located deep inside massive stars, are ejected along with the jet, but a large fraction of the ejected material falls back along the equatorial plane. Because carbon is largely contained in the outer region, it is almost entirely ejected without falling back. This model successfully explains the low abundance of calcium, the non-detection of iron, and the high abundance of carbon observed in SMSS J0313-6708.
   
“If such supernovae are actually possible,” Nomoto says, “the result supports the theoretical prediction that the first stars could be typical massive stars rather than monster-like objects with masses more than several hundred times that of the Sun.” Since heavy elements play a role in star formation through the gravitational pull of interstellar gas, the first stars, which formed without heavy elements, should display quite different characteristics compared to what is typically observed in the present Milky Way Galaxy. In particular, without heavy elements, some researchers have suggested that stars could be as massive as a few hundred times that of the Sun. The presence of stars much less massive than such monster-like objects among the first stars may affect the theory of star formation in the absence of heavy elements. In future studies, researchers should employ simulations for the formation of the first stars in the early universe that reproduce the present result.

“The next issue is to determine if these less massive stars are typical first stars,” Ishigaki says. “In the near future, more data from a number of iron-poor stars will be available. Applying the method we used in this study to these data will shed light on the unknown nature of the first stars.”

Publication:

Astrophysical Journal Letters (792, (2014)、32-37)
Title: Faint Population III Supernovae as the Origin of the Most Iron-poor Stars
Authors: Miho N. Ishigaki1, Nozomu Tominaga1,2, Chiaki Kobayashi1,3, and Ken'ichi Nomoto1,4
Affiliations:
1 Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo,
2 Department of Physics, Faculty of Science and Engineering, Konan University,
3 School of Physics, Astronomy and Mathematics, Centre for Astrophysics Research, University of Hertfordshire,  
4 Hamamatsu Professor

DOI: 10.1088/2041-8205/792/2/L32

Contacts:

Miho Ishigaki, Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, miho.ishigaki@ipmu.jp
Ken'ichi Nomoto, Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, nomoto_at_astron.s.u-tokyo.ac.jp

PIO Contact:

Marina Komori, Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo
+81-4-7136-5977 (office), press_at_ipmu.jp
Aya Tsuboi, Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo
+81-4-7136-5981 (office) 

ABOUT KAVLI IPMU

Kavli IPMU (Kavli Institute for the Physics and Mathematics of the Universe) is an international research institute with English as its official language. The goal of the institute is to discover the fundamental laws of nature and to understand the Universe from the synergistic perspectives of mathematics, astronomy, and theoretical and experimental physics. The Institute for the Physics and Mathematics of the Universe (IPMU) was established in October 2007 under the World Premier International Research Center Initiative (WPI) of the Ministry of Education, Sports, Science and Technology in Japan with the University of Tokyo as the host institution. IPMU was designated as the first research institute within Todai Institutes for Advanced Study (TODIAS) in January 2011. It received an endowment from The Kavli Foundation and was renamed the “Kavli Institute for the Physics and Mathematics of the Universe” in April 2012. Kavli IPMU is located on the Kashiwa campus of the University of Tokyo, and more than half of its full-time scientific members come from outside Japan.

Kavli IPMU Website - http://www.ipmu.jp/

Marina Komori | Eurek Alert!
Further information:
http://www.ipmu.jp/node/1997

Further reports about: Kavli PIO Universe early universe formation massive stars physics special star formation supernovae

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>