Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MOSHEMT—innovative transistor technology reaches record frequencies

16.01.2020

Scientists at the Fraunhofer Institute for Applied Solid State Physics IAF have succeeded in developing a novel type of transistor with extremely high cut-off frequencies: metal oxide semiconductor HEMTs, in short MOSHEMTs. To achieve this, they have replaced the Schottky barrier of a conventional HEMT with an oxide. The result is a transistor that enables even smaller and more powerful devices. It has already reached record frequencies of 640 GHz. This technology is expected to advance next generation electronics.

The high frequency characteristics of high eElectron mobility transistors (HEMTs) have been steadily improved in the past years. The transistors have become increasingly faster by downscaling the gate length to 20 nm. However, a HEMT encounters a problem at such small structure sizes: The thinner the barrier material of InAlAs (indium aluminum arsenide) becomes, the more electrons leak from the current carrying channel through the gate.


Amplifier circuit with MOSHEMT transistors at 243 GHz

Fraunhofer IAF

These unwanted gate leakage currents have a negative impact on the efficiency and durability of the transistor, which renders further downscaling attempts impossible. The current transistor geometry of a conventional HEMT has reached its scaling limit.

Silicon MOSFETs (metal oxide semiconductor field effect transistors) are no stranger to this problem, either. However, they possess an oxide layer that can prevent unwanted leakage currents for longer than it is the case with HEMTs.

Combining advantages of both transistor technologies

Researchers at Fraunhofer IAF have combined the advantages of III-V semiconductors and Si MOSFETs and have replaced the Schottky barrier of a HEMT with an isolating oxide layer. The result is a new type of transistor: the metal oxide semiconductor HEMT, in short MOSHEMT.

»We have developed a new device which has the potential to exceed the efficiency of current HEMTs by far. The MOSHEMT allows us to downscale it even further, thus making it faster and more efficient,« explains Dr. Arnulf Leuther, researcher in the field of high-frequency electronics at Fraunhofer IAF.

With the new transistor technology, Leuther and his team have succeeded in achieving a record with a maximum oscillation frequency of 640 GHz. »This surpasses the global state of the art for any MOSFET technology, including silicon MOSFETs,« adds Leuther.

High barrier to overcome leakage currents

To overcome the gate leakage currents, the scientists had to use a material with a significantly higher barrier than the conventional Schottky barrier. They replaced the semiconductor barrier material with a combination of isolating layers consisting of aluminum oxide (Al2O3) and hafnium oxide (HfO2).

»This enables us to reduce the gate leakage current by a factor of more than 1000. Our first MOSHEMTs show a very high development potential, while current field effect transistor technologies have already reached their limit,« reports Dr. Axel Tessmann, scientist at Fraunhofer IAF.

The world’s first integrated circuit with MOSHEMTs

The extremely fast MOSHEMT is designed for the frequency range above 100 GHz and is therefore especially promising for novel communication, radar and sensor applications.

In the future, high-power devices will ensure a faster data transmission between radio towers and enable imaging radar systems for autonomous driving as well as higher resolution and precision of sensor systems.

While it will take some years until the MOSHEMT finds its way into commercial application, the researchers at Fraunhofer IAF have already succeeded to realize the world’s first amplifier MMIC (monolithic microwave integrated circuit) based on INGaAs MOSHEMTs for the frequency range between 200 and 300 GHz.

Anne-Julie Maurer | Fraunhofer-Institut für Angewandte Festkörperphysik IAF
Further information:
http://www.iaf.fraunhofer.de

More articles from Physics and Astronomy:

nachricht Return of the Blob: Surprise link found to edge turbulence in fusion plasma
27.05.2020 | DOE/Princeton Plasma Physics Laboratory

nachricht NIST researchers boost microwave signal stability a hundredfold
26.05.2020 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>