Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More stable light comes from intentionally 'squashed' quantum dots

11.01.2019

Exploiting new 'strain engineering' approach produces highly stable, narrow linewidth light from individual quantum dots

Intentionally "squashing" colloidal quantum dots during chemical synthesis creates dots capable of stable, "blink-free" light emission that is fully comparable with the light produced by dots made with more complex processes. The squashed dots emit spectrally narrow light with a highly stable intensity and a non-fluctuating emission energy.


Novel colloidal quantum dots are formed of an emitting cadmium/selenium (Cd/Se) core enclosed into a compositionally graded CdxZn1-xSe shell wherein the fraction of zinc versus cadmium increases towards the dot's periphery. Due to a directionally asymmetric lattice mismatch between CdSe and ZnSe, the core, at top right, is compressed more strongly perpendicular to the crystal axis than along it. This leads to modifications of the electronic structure of the CdSe core, which beneficially affects its light-emission properties. Bottom image: Experimental traces of emission intensity from a conventional quantum dot (upper panel) and a novel asymmetrically compressed quantum dot (lower panel) resolved spectrally and temporally. The emission from the conventional quantum dot shows strong spectral fluctuations ("spectral jumps" and "spectral diffusion"). The emission from the asymmetrically compressed quantum dots is highly stable in both intensity and spectral domains. In addition, it shows a much narrower linewidth, which is below the room-temperature thermal energy (25 meV).

Credit: Los Alamos National Laboratory

New research at Los Alamos National Laboratory suggests that the strained colloidal quantum dots represent a viable alternative to presently employed nanoscale light sources, and they deserve exploration as single-particle, nanoscale light sources for optical "quantum" circuits, ultrasensitive sensors, and medical diagnostics.

"In addition to exhibiting greatly improved performance over traditional produced quantum dots, these new strained dots could offer unprecedented flexibility in manipulating their emission color, in combination with the unusually narrow, 'subthermal' linewidth," said Victor Klimov, lead Los Alamos researcher on the project.

"The squashed dots also show compatibility with virtually any substrate or embedding medium as well as various chemical and biological environments."

The new colloidal processing techniques allow for preparation of virtually ideal quantum-dot emitters with nearly 100 percent emission quantum yields shown for a wide range of visible, infrared and ultraviolet wavelengths. These advances have been exploited in a variety of light-emission technologies, resulting in successful commercialization of quantum-dot displays and TV sets.

The next frontier is exploration of colloidal quantum dots as single-particle, nanoscale light sources. Such future "single-dot" technologies would require particles with highly stable, nonfluctuating spectral characteristics.

Recently, there has been considerable progress in eliminating random variations in emission intensity by protecting a small emitting core with an especially thick outer layer. However, these thick-shell structures still exhibit strong fluctuations in emission spectra.

In a new publication in the journal Nature Materials, Los Alamos researchers demonstrated that spectral fluctuations in single-dot emission can be nearly completely suppressed by applying a new method of "strain engineering." The key in this approach is to combine in a core/shell motif two semiconductors with directionally asymmetric lattice mismatch, which results in anisotropic compression of the emitting core.

This modifies the structures of electronic states of a quantum dot and thereby its light emitting properties. One implication of these changes is the realization of the regime of local charge neutrality of the emitting "exciton" state, which greatly reduces its coupling to lattice vibrations and fluctuating electrostatic environment, key to suppressing fluctuations in the emitted spectrum.

An additional benefit of the modified electronic structures is dramatic narrowing of the emission linewidth, which becomes smaller than the room-temperature thermal energy.

###

Publication: Young-Shin Park, Jaehoon Lim, and Victor I. Klimov, Asymmetrically Strained Quantum Dots with Nonfluctuating Single-Dot Emission Spectra and Subthermal Room-Temperature Linewidths, Nature Materials, January 7, 2019. DOI: 10.1038/s41563-018-0254-7

Project members: Young-Shin Park (Research Scientist, LANL & UNM), Jaehoon Lim (Postdoctoral Research Associate), Victor I. Klimov (Laboratory Fellow, Project Leader).

Funding: Single-dot spectroscopic studies were funded by the U.S. Department of Energy's Office of Science. The work on quantum dot synthesis was supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

Media Contact

Nancy Ambrosiano
nwa@lanl.gov
505-667-0471

 @LosAlamosNatLab

http://www.lanl.gov 

Nancy Ambrosiano | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41563-018-0254-7

More articles from Physics and Astronomy:

nachricht Double layer of graphene helps to control spin currents
18.10.2019 | University of Groningen

nachricht Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling
17.10.2019 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>