Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More energy means more effects -- in proton collisions

07.10.2019

The higher the collision energy of particles, the more interesting the physics. Scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow have found further confirmation of this assumption, this time in the high energy collision of protons with protons or lead nuclei.

When a proton collides at high energy with another proton or atomic nucleus, the effect of the collision is a stream of secondary particles known as a jet in physicists' jargon. Some of these jets extend sideways, but there are some that keep to a direction of motion close to the primary one.


In proton-proton or proton-nucleus collisions, streams of secondary particles, known as jets, are produced. Some of these jets move sideways, but there are some that keep to a direction of motion close to the primary one. (Source: IFJ PAN, P. Kotko)

Credit: IFJ PAN, P. Kotko

The details of the collision course are determined not only by the type of colliding particles, but also by many other factors, in particular the amount of energy. In Physics Letters B, a group of four scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow has shown that at the highest energies obtained in the LHC accelerator, for an accurate description of the course of the collision of protons with protons or lead nuclei, additional phenomena need to be taken into account.

The ATLAS experiment at the LHC accelerator (CERN, Geneva) has been recording the collisions of two proton beams or a proton beam with a beam of lead nuclei travelling in opposite directions for years.

The Cracow-based researchers took a closer look at the latest data concerning high energy collisions reaching five teraelectron volts (i.e. thousands of billions of eV). Special attention was paid to those cases in which the jets running from the collision point moved in a forward direction, i.e. along the original direction of the beams.

"Neither protons nor the neutrons found in atomic nuclei are elementary particles. Usually, they are said to consist of three quarks, but this is a huge over-simplification. In fact, each proton or neutron is an extremely dynamic entity, filled with a constantly boiling sea of gluons, i.e. the particles that glue quarks together.

There is an interesting fact connected with this dynamism: depending on the behaviour of its component particles, i.e. partons, the proton can be sometimes more dense or sometimes less. And this explains why we find the cases with collisions with 'forward-directed' jets so interesting. They relate to situations where one proton is dilute, or behaves like a bullet, and the other one is dense, or behaves like a target", explains Dr. Krzysztof Kutak (IFJ PAN).

In their model of high energy proton collisions, physicists from the IFJ PAN took into consideration two previously known phenomena. The first is connected with the fact that as the collision energy increases, the number of gluons formed inside protons increases too. It turns out that this process does not continue indefinitely. At a certain point, when the collision energy is great enough, there are so many gluons that they start to recombine with each other. A dynamic equilibrium is then created between the process of gluon production and their recombination. This effect is called saturation.

The second factor taken into account by the Cracow physicists was the Sudakov effect. This relates to situations in which the momentum of the difference of the momenta of generated jets is greater than the momentum of the partons initiating jet production. This seemingly contradictory result is in reality the result of quantum effects associated with the transfer of momentum between the partons involved in the collision. As a result, the probability of producing back-to-back jets is reduced and probability of production of jets at moderate azimuthal angel is enhanced.

"Both saturation and the Sudakov effect have been known for some time. However, their interplay was not addressed. The extreme conditions, that are created in forward-forward di-jets production motivated us to account for both effects", says Dr. Andreas van Hameren (IFJ PAN). "Sudakov effect was usually taken into account in simulations. However once energy is high enough, the nonlinear effects turn on and one needs to account for saturation", says Dr. Piotr Kotko (IFJ PAN, AGH).

This statement is supplemented by Dr. Sebastian Sapeta (IFJ PAN): "We ourselves took the Sudakov effect into consideration in one of our earlier papers, but only in the cases when some jets ran in a 'forward' direction and some remained in the central area of the detector, i.e. scattered at a large angle in relation to the direction of the beam. When describing such events, we could omit saturation".

In their latest publication, the Cracow-based group proves that for the theoretical description to agree with experimental data, collisions at high energies require both of these phenomena to be taken into consideration simultaneously. This article is the first such complete description of the production of 'forward' jets in high-energy proton-proton and proton-nucleus (lead) high-energy collisions. Currently, the authors are working on an extension of the proposed formalism to collisions with the production of a greater number of jets and particles.

This research was financed by a DEC-2017/27/B/ST2/01985 grant from the National Science Centre in Poland.

The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN) is currently the largest research institute of the Polish Academy of Sciences. The broad range of studies and activities of IFJ PAN includes basic and applied research, ranging from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of methods of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly yield of the IFJ PAN encompasses more than 600 scientific papers in the Journal Citation Reports published by the Thomson Reuters. The part of the Institute is the Cyclotron Centre Bronowice (CCB) which is an infrastructure, unique in Central Europe, to serve as a clinical and research centre in the area of medical and nuclear physics. IFJ PAN is a member of the Marian Smoluchowski Kraków Research Consortium: "Matter-Energy-Future" which possesses the status of a Leading National Research Centre (KNOW) in physics for the years 2012-2017. The Institute is of A+ Category (leading level in Poland) in the field of sciences and engineering.

###

CONTACTS:

Dr. Krzysztof Kutak
The Institute of Nuclear Physics, Polish Academy of Sciences
tel.: +48 12 6628312
email: krzysztof.kutak@ifj.edu.pl

Dr. Sebastian Sapeta
The Institute of Nuclear Physics, Polish Academy of Sciences
tel.: +48 12 6628353
email: sebastian.sapeta@ifj.edu.pl

Dr. Andreas van Hameren
The Institute of Nuclear Physics, Polish Academy of Sciences
tel.: +48 12 6628353
email: andre.hameren@ifj.edu.pl

Dr. Piotr Kotko
The Institute of Nuclear Physics, Polish Academy of Sciences
tel.: +48 12 6628426
email: piotr.kotko@ifj.edu.pl

SCIENTIFIC PAPERS:

"Broadening and saturation effects in dijet azimuthal correlations in p-p and p-Pb collisions at sqrt( sNN ) = 5.02 TeV"

A. van Hameren, P. Kotko, K. Kutak, S. Sapeta

Physics Letters B, vol. 795, pp. 511-515

DOI: https://doi.org/10.1016/j.physletb.2019.06.055

LINKS:

http://www.ifj.edu.pl/

The website of the Institute of Nuclear Physics Polish Academy of Sciences.

http://press.ifj.edu.pl/

Press releases of the Institute of Nuclear Physics Polish Academy of Sciences.

IMAGES:

IFJ191003b_fot01s.jpg

HR: http://press.ifj.edu.pl/news/2019/10/03/IFJ191003b_fot01.jpg

In proton-proton or proton-nucleus collisions, streams of secondary particles, known as jets, are produced. Some of these jets move sideways, but there are some that keep to a direction of motion close to the primary one. (Source: IFJ PAN, P. Kotko)

Media Contact

Dr. Krzysztof Kutak
krzysztof.kutak@ifj.edu.pl
48-126-628-312

http://www.ifj.edu.pl/?lang=en 

Dr. Krzysztof Kutak | EurekAlert!
Further information:
https://press.ifj.edu.pl/en/news/2019/10/03/
http://dx.doi.org/10.1016/j.physletb.2019.06.055

Further reports about: LHC accelerator Nuclear Nuclear Physics proton collisions protons

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>