Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules Brilliantly Illuminated

23.04.2018

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of health. Researchers at the Laboratory for Attosecond Physics (LAP) – a joint venture between Ludwig-Maximilians-Universität (LMU) and the Max Planck Institute of Quantum Optics (MPQ) in Garching near Munich – want to use brilliant infrared light to study molecular disease markers in much greater detail, for example to facilitate early stage cancer diagnosis.


An artistic view of frequency conversion from near-infrared to mid-infrared through a nonlinear crystal. Shortwave radiation enters a crystal and drives electron motion. The electrons cannot fully follow the frequency of the light field and partially oscillate at lower frequencies. In this way mid-infrared radiation is generated.

Copyright: Alexander Gelin

The team has developed a powerful femtosecond light source which emits at wavelengths between 1.6 and 10.2 micrometers. This instrument should make it possible to detect organic molecules present in extremely low concentrations in blood or aspirated air.

Often, it takes little more than a glance to recognize that someone is sick. But illnesses whose effects are readily perceptible to the human eye are usually in an advanced stage. With the aid of laser light, Munich researchers hope to be able to detect and diagnose diseases in their early stages, when they are most amenable to therapeutic intervention. However, this requires a very sharp view – one that can peer into the world of molecules. Myriads of molecules react in highly specific ways to light of certain wavelengths in the mid-infrared region.

By absorbing particular wavelengths, each type of molecule in a sample imprints a specific signature on the transmitted beam, which serves as a molecular fingerprint. With a source of broadband mid-infrared light one detects the fingerprints of many molecular structures at once – in a sample of blood or aspirated air, for example. If the sample contains marker molecules that are associated with specific disease states, these too will reveal their presence in the spectrum of the transmitted infrared light.

LAP physicists have now constructed such a light source, which covers the wavelengths between 1.6 and 10.2 microns. The laser system exhibits watt-level average output power, and is well focusable which results in a highly brilliant infrared light source. This feature enhances the ability to detect molecules present in extremely low concentrations. In addition, the laser can produce trains of femtosecond pulses [a femtosecond is a millionth of a billionth of a second (10 to the minus 15 sec)], which makes it possible to carry out time-resolved as well as low-noise and highly- precise measurements.

At present, infrared spectroscopy is often based on the use of incoherent light, which provides coverage of the whole mid-infrared region. However, the relatively low brilliance of the beam produced by incoherent sources markedly reduces the ability to detect very weak molecular fingerprints. Synchrotron radiation produced in particle accelerators can alternatively be used, but such facilities are in short supply and are extremely expensive.

However, laser-based methods can generate even brighter beams than synchrotrons do. The physicists at LAP have now succeeded in building a coherent light source which produces brilliant laser light over a broad spectral region in the infrared range. That used to be the major drawback of laser sources Moreover, the new system has a much smaller footprint (and is far less costly) than a synchrotron: it fits on a large table.

“Of course, there is still a long way to go until we can diagnose cancer at much early stage than at present. We need a better understanding of disease markers and we have to design an efficient way to quantify them, for example,” says Marcus Seidel, one of the researchers involved in the project. “But now having significantly improved light sources available, we can begin to tackle these issues.” Moreover, the new laser system will find applications in areas beyond the biosciences. After all, the precise observation of molecules and their transformations is at the core of both chemistry and physics too. Thorsten Naeser

Image description:
An artistic view of frequency conversion from near-infrared to mid-infrared through a nonlinear crystal. Shortwave radiation enters a crystal and drives electron motion. The electrons cannot fully follow the frequency of the light field and partially oscillate at lower frequencies. In this way mid-infrared radiation is generated. (Copyright: Alexander Gelin)

Original publication:
Marcus Seidel,Xiao Xiao,Syed A. Hussain, Gunnar Arisholm, Alexander Hartung, Kevin T. Zawilski, Peter G. Schunemann, Florian Habel, Michael Trubetskov, Vladimir Pervak, Oleg Pronin, Ferenc Krausz
Multi-watt, multi-octave, mid-infrared femtosecond source
Science Advances 4, eaaq1526 (2018), DOI: 10.1126/sciadv.aaq1526

Contact:

Dr. Oleg Pronin
Laboratory for Attosecond Physics
Max Planck Institute of Quantum Optics and
Ludwig-Maximilians-Universität München
85748 Garching, Germany
Phone: +49 (0)89 289 - 14187
E-mail: oleg.pronin@physik.uni-muenchen.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>