Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular sudoku

06.10.2011
A team of scientists from the Catalan Institute of Nanotechnology, ICREA and UAB investigated the properties of a special kind of sudoku, made by assembling tiny molecules into a 3x3 square array

As reported this week in Nature Communications, the researchers used the atomically-sharp tip of a scanning tunneling microscope to move 1-nanometer sized molecules on top of a silver substrate.

The tip is controlled with such great accuracy that it is possible to precisely choose the position of each molecule and build tiny molecular squares, crosses, and chains of controlled size and orientation. The same tip is then used as a mobile electrode to probe the electrical conductivity of the molecules as a function of their position in the array. Figures a-d show an example of such measurements: a represent the topography of a "sudoku" molecular cluster, whereas b-d show regions of high conductivity at different voltages.

At low voltage, electrons prefer to pass through the corner molecules, whereas at high voltage, only the central molecule is conducting. This is so because the conductivity depends strongly on a small set of electronic states, which conduct electricity to the substrate, and these are modified by the presence of side-to-side neighbors.

The molecular conductance was found to vary strongly not only from one molecule to another, but also within each molecule, due to the possibility of exploiting different electron transport channels at different positions. Such conduction channels arise from the excitation of internal degrees of freedom of the molecules, such as atomic vibrations and magnetic coupling of the electronic spins. All together, these results demonstrate the intricacy and beauty of molecular electronics, providing a glimpse of its advantages, such as the fabrication of versatile miniaturized circuits, and challenges, which may prove harder to solve than a sudoku game.

Spin coupling and relaxation inside molecule-metal contacts
Aitor Mugarza1,2*, Cornelius Krull1,2, Roberto Robles2, Sebastian Stepanow1,2, Gustavo Ceballos1,2, Pietro Gambardella1,2,3,4
1 Catalan Institute of Nanotechnology (ICN), UAB Campus, E-08193 Barcelona, Spain
2 Centre d'Investigacions en Nanociència i Nanotecnologia (CIN2), UAB Campus, E-08193 Barcelona, Spain
3 Institució Catalana de Recerca i Estudis Avançats (ICREA)
4 Departament de Física, Universitat Autonoma de Barcelona, E-08193 Barcelona, Spain
DOI: 10.1038/ncomms1497
On-line versión will be published 4 October de 2011 a las 18:00 horas
For further information:
Catalan Institute of Nanotechnology (ICN) www.icn.cat
Contact: Prof. Dr. Pietro Gambardella, pietro.gambardella@icn.cat
Communication Dept.: Ana de la Osa, ana.delaosa.icn@uab.es
Tel: + (34) 93 581 4963

Pietro Gambardella | EurekAlert!
Further information:
http://www.icn.cat

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>