Molecular blockade

Nanoscale devices confine electrons and enable manipulation of electron spin—an inherent property akin to the direction in which the particle is rotating. An unexpected mechanism for this control in asymmetric structures has now been reported by Keiji Ono at the RIKEN Advanced Science Institute, Wako, in collaboration with a team of researchers from Japan and Taiwan.

Artificial systems that trap electrons in a tiny volume can display many of the properties of atoms because they create an analogous series of discrete electron energy levels. “One example is the Zeeman Effect in which an applied magnetic field splits a single electron energy level into two, depending on its spin,” explains Ono.

Taking this analogy further, two closely spaced ‘artificial atoms’ can behave like an artificial molecule. In principle, it is possible to transfer an electron between these atoms by tuning the energy level of an electron in one atom to that of the second by, for example, applying an electric field. Indeed, this phenomenon, known as resonant tunneling, occurs in artificial molecules consisting of two identical atoms. Ono and his team showed, however, that the situation is not so simple in artificial molecules comprising two different atoms.

They investigated a structure that was a stack of alternating layers of semiconductor. Electrons become trapped in the semiconductor with the smaller bandgap by the surrounding layers of wide-bandgap material. The top ‘atom’ was 7.5 nanometers thick and made of indium gallium arsenide. A 6.5-nanometer barrier separated this from the second atom: 10 nanometers of gallium arsenide. Etched pillars with a diameter of less than one micrometer confined the electrons in the transverse direction.

The difference in size and composition meant that the Zeeman Effect was stronger in the top atom than the bottom one. This made it impossible to align both of the Zeeman-split levels in the two atoms at the same time. Ono and colleagues demonstrated that because of this, when an energy state from one atom is aligned with one in the second, the electron flow through the molecule reduces, an effect they call spin blockade. The flow increased when they tuned the two Zeeman levels in one atom to the midpoint of those in the other atom.

“This finding can be used as a basic tool for selecting, filtering, or initializing an individual electron spin,” comments Ono. “I hope this can be applied to quantum information technology.”

The corresponding author for this highlight is based at the Low Temperature Physics Laboratory Single Quantum Dynamics Research Group, RIKEN Advanced Science Institute

Journal information

1. Huang, S.M., Tokura, Y., Akimoto, H., Kono, K., Lin, J.J., Tarucha, S. & Ono, K. Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splitting. Physical Review Letters 104, 136801 (2010)

Media Contact

gro-pr Research asia research news

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors