Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile device by UCLA enables easy prediction and control of harmful algal blooms

01.10.2018

In the past 10 years, harmful algal blooms -- sudden increases in the population of algae, typically in coastal regions and freshwater systems -- have become a more serious problem for marine life throughout the U.S. The blooms are made up of phytoplankton, which naturally produce biotoxins, and those toxins can affect not only fish and plant life in the water, but also mammals, birds and humans who live near those areas.

According to the National Oceanic and Atmospheric Administration, the events have become more common and are occurring in more regions around the world than ever before.


UCLA's imaging flow cytometer is powered by deep learning

Credit

Zoltan Gorocs, Miu Tamamitsu,Vittorio Bianco, Patrick Wolf,Shounak Roy, Koyoshi Shindo, Kyrollos Yanny, Yichen Wu, Hatice Ceylan Koydemir, Yair Rivenson & Aydogan Ozcan. Light: Science & Applications (2018) 7:66. DOI 10.1038/s41377-018-0067

The ability to forecast harmful algal blooms and their locations, size and severity could help scientists prevent their harmful effects. But it has been difficult to predict when and where the blooms will occur.

Now, UCLA researchers have developed an inexpensive and portable device that can analyze water samples immediately, which would provide marine biologists with real-time insight about the possibility that the algal blooms could occur in the area they're testing. That, in turn, would allow officials who manage coastal areas to make better, faster decisions about, for example, closing beaches and shellfish beds before algal blooms cause serious damage.

UCLA researchers created a new flow cytometer -- which detects and measures the physical and chemical characteristics of tiny objects within a sample -- based on holographic imaging and artificial intelligence. It can quickly analyze the composition of various plankton species within a matter of seconds, much faster than the current standard method, which involves collecting water samples manually and running them through several steps.

The research, which was published online by Light: Science & Applications and will appear in the journal's print edition, was led by Aydogan Ozcan, the UCLA Chancellor's Professor of Electrical and Computer Engineering and associate director of the California NanoSystems Institute at UCLA.

The growing threat from blooms is being caused in part by higher water temperature due to climate change, and in part by high levels of nutrients (mainly phosphorus, nitrogen and carbon) from fertilizers used for lawns and farmland.

The toxic compounds produced by the blooms can deplete oxygen from the water and can block sunlight from reaching fish and aquatic plants, which cause them to die or migrate elsewhere. In addition, fish and nearby wildlife can even ingest the toxins; and in some rare cases, if they are close enough to the blooms, humans can inhale them which can affect the nervous system, brain and liver, and eventually lead to death.

Scientists have generally tried to understand algal blooms through manual sampling and traditional light microscopy used to create high-resolution maps that show the phytoplankton composition over extended periods of time. To build those maps, technicians have to collect water samples by hand using plankton nets, and then bring them to a lab for analysis. The process is also challenging because the concentration and composition of algae in a given body of water can change quickly -- even in the time it takes to analyze samples.

The device created by Ozcan and his colleagues speeds up the entire process and because it does not use lenses or other optical components, it performs the testing at a much lower cost. It images algae samples -- and is capable of scanning a wide range of other substances, too --using holography and artificial intelligence.

Commercially available imaging flow cytometers used in environmental microbiology can cost from $40,000 to $100,000, which has limited their widespread use. The UCLA cytometer is compact and lightweight and it can be assembled from parts costing less than $2,500.

One challenge the researchers had to overcome was ensuring the device would have enough light to create well-lit, high-speed images without motion blur.

"It's similar to taking a picture of a Formula 1 race car," Ozcan said. "The cameraman needs a very short exposure to avoid motion blur. In our case, that means using a very bright, pulsed light source with a pulse length about one-thousandth the duration of the blink of an eye."

To test the device, the scientists measured ocean samples along the Los Angeles coastline and obtaining images of its phytoplankton composition. They also measured the concentration of a potentially toxic alga called Pseudo-nitzschia along six public beaches in the region. The UCLA researchers' measurements were comparable to those in a recent study by the California Department of Public Health's Marine Biotoxin Monitoring Program.

Zoltán Gӧrӧcs, a UCLA postdoctoral scholar and the study's first author, said the researchers are in the process of discussing their new device with marine biologists to determine where it would be most useful.

"Our device can be adapted to look at larger organisms with a higher throughput or look at smaller ones with a better image quality while sacrificing some of the throughput," Gӧrӧcs said.

###

Other co-authors of the paper are Miu Tamamitsu, Vittorio Bianco, Patrick Wolf, Shounak Roy, Koyoshi Shindo, Kyrollos Yanny, Yichen Wu, Hatice Ceylan Koydemir and Yair Rivenson.

The research was funded by the U.S. Army Research Office.

Yaobiao Li | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41377-018-0067-0

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>