Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mirror Casting Event for the Giant Magellan Telescope

10.01.2012
On Jan. 14, the second 8.4-meter (27.6 ft) diameter mirror for the Giant Magellan Telescope, or GMT, will be cast inside a rotating furnace at the University of Arizona's Steward Observatory Mirror Lab underneath the campus football stadium. The mirror lab will host a special event to highlight this milestone in the creation of the optics for the Giant Magellan Telescope.

Members of the media are invited to visit the mirror lab on Jan. 14 between 9-11 a.m. MST to see the liquid glass as it is spun cast in a rotating oven at a temperature of 1170 degrees C (2140 F). This casting marks another major step in the construction of the Giant Magellan Telescope. There will be opportunities to interview leading scientists and engineers involved in the project.

The GMT features an innovative design utilizing seven mirrors, each 8.4 meters in diameter, arranged as segments of a single mirror 24.5 meters

(80 feet) in diameter, to bring starlight to a common focus via a set of adaptive secondary mirrors configured in a similar seven-fold pattern.

"In this design the outer six mirrors are off-axis paraboloids and represent the greatest optics challenge ever undertaken in astronomical optics by a large factor," said Roger Angel, director of the Steward Observatory Mirror Lab, or SOML.

The GMT will allow astronomers to answer some of the most pressing questions about the cosmos including the detection, imaging and characterization of planets orbiting other stars, the nature of dark matter and dark energy, the physics of black holes, and how stars and galaxies evolved during the earliest phases of the universe.

"The GMT will allow astronomers to observe for the first time the first stars formed after the Big Bang," said Steve Finkelstein, Hubble Fellow at The University of Texas at Austin. "I cannot wait to make these observations."

"Astronomical discovery has always been paced by the power of available telescopes and imaging technology," said Peter Strittmatter, director of Steward Observatory. "The GMT allows another major step forward in both sensitivity and image sharpness. In fact the GMT will be able to acquire images 10 times sharper than the Hubble Space Telescope and will provide a powerful complement not only to NASA's 6.5-meter James Webb Space Telescope, or JWST, but also to the Atacama Large Millimeter Array, or ALMA, and the Large Synoptic Survey Telescope, or LSST, both located in the southern hemisphere."

Patrick McCarthy, GMT project director, added, "This second GMT casting is going forward now because the primary optics are on the critical path for the project, and because the polishing of the first off-axis 8.4-meter GMT mirror is very close to completion, with an optical surface accuracy within about 25 nanometers, or about one-thousandth the thickness of a human hair."

Like other mirrors produced by the SOML, the GMT mirrors are designed to be spun cast, thereby achieving the basic front surface in the shape of a paraboloid. A paraboloid is the shape taken on by water in a bucket when the bucket is spun around its axis; the water rises up the walls of the bucket while a depression forms in the center.

Some 21 tons of borosilicate glass, made by the Ohara Corporation, flow into a pre-assembled mold to create a lightweight honeycomb glass structure that is very stiff and quickly adjusts to changes in nighttime air temperature, each resulting in sharper images. The mirror lab has already produced the world's four largest astronomical mirrors, each 8.4 meters in diameter. Two are in operation in the Large Binocular Telescope, or LBT - currently the largest telescope in the world; one is for the LSST, and the fourth is the first off-axis mirror for GMT. The UA's Mirror Lab has also produced five 6.5-meter mirrors, two of which are in the twin Magellan telescopes at Las Campanas Observatory in Chile.

"The novel technology developed at the mirror lab is creating a whole new generation of large telescopes with unsurpassed image sharpness and light collecting power," said Wendy Freedman, director of the Carnegie Observatories and chair of the GMTO Board. "The SOML mirrors in the twin Magellan Telescopes at our Las Campanas Observatory site are performing superbly and led to our adoption of this technology for the GMT."

The GMT is set to begin science operations in 2020 at the Las Campanas Observatory, exploiting the clear dark skies of the Atacama Desert in northern Chile.

"With funding commitments in hand for close to half of the $700 million required to complete the project, with one mirror essentially finished and the second about to be cast, and with the planned groundbreaking at Las Campanas in February of this year, the project is on track to meet this schedule goal," said Matthew Colless, Director of the Australian Astronomical Observatory.

"The giant mirrors being spun cast for the GMT at the Steward Observatory Mirror Lab are like the sails of the great ships of exploration ca. 1500, except here the discoveries are not lands across the ocean, but rather the nature of whole new worlds and island universes, spanning all of space and time," said Joaquin Ruiz, dean of the College of Science, University of Arizona. "We are proud to participate in such an exciting international scientific project as the GMT."

The event is supported by the University of Arizona's Steward Observatory and College of Science and by the GMTO Corp., a nonprofit entity with project offices based in Pasadena, Calif. The GMTO manages the GMT Project on behalf of its international partners, namely Astronomy Australia Ltd., the Australian National University, the Carnegie Institution for Science, Harvard University, the Korea Astronomy and Space Science Institute, the Smithsonian Institution, Texas A&M University, the University of Arizona, the University of Chicago and the University of Texas at Austin.

CONTACTS:

Roger Angel, director, SOML (rangel@as.arizona.edu; 520-621-6541)

Patrick McCarthy, director, GMTO (pmccarthy@gmto.org; 626-304-0222)

Wendy Freedman, chair, Board of Directors, GMTO
(wendy@obs.carnegiescience.edu; 626-304-0204)
Peter Strittmatter, director, Steward Observatory (pstrittmatter@email.arizona.edu; 520-621-6524)

Peter Wehinger, staff astronomer and director of development, Steward Observatory (wehinger@email.arizona.edu; 520-621-7662)

Cathi Duncan, coordinator (cduncan@as.arizona.edu; 520-626-8792)

LINKS:

For more information about the GMT, see www.gmto.org.

For images, see http://www.gmto.org/forpress.html.

The University of Arizona Steward Observatory Mirror Lab:
http://mirrorlab.as.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>