Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniaturizing Delay Lines: Quantum Spin Hall Effect for Light

23.08.2011
Information traveling near the speed of light always sounds a little like science fiction. But this is what we get whenever we connect to the internet or watch cable television. Small packets of light called photons travel kilometers over networks of optical fiber, bringing information into our homes.

If fiber optic cable is ideal for carrying information, why haven’t photons replaced electrons entirely? Largely because miniaturizing photonic equipment all the way down micrometer scales often degrades their performance.

Manipulating photons such that they behave like their electrical counterparts- the electron- is a rich area of research with applications extending into quantum information and condensed matter.

Scientists are proposing a novel method for forcing photons to act like electrons. Two researchers at the Joint Quantum Institute (JQI)*, Mohammad Hafezi and Jacob M. Taylor, and two researchers at Harvard, Eugene A. Demler and Mikhail D. Lukin, propose an optical delay line that could fit onto a computer chip. Delay lines, added to postpone a photon’s arrival, are passive, but critical in processing signals. Kilometers of glass fiber are easily obtained, but fabricating optical elements that can fit on a single chip creates defects that can lead to reduced transmission of information.

The proposed delay line, which harnesses sophisticated quantum effects, would help to protect signals from degradation and maybe lead to more complex photonic devices. The new work is described this week in Nature Physics (Advanced online publication August 21) in an article titled “Robust optical delay lines via topological protection.” **

Quantum Hall physics is the remarkable phenomenon at the heart of this new approach. The quantum Hall effect occurs in a two-dimensional sea of electrons under the influence of a large magnetic field. The electrons are allowed to travel along the edges of the material but do not have enough energy to permeate throughout the bulk or central regions. It is as if there are conduction highways along the edge of the material. Even if there are defects in the material, like potholes in the road, electrons still make it to their destination.

These highways, called “edge states” are open for transit only at specific values of the externally applied magnetic field. Because the routes are so robust against disorder and reliably allow for electron traffic, this effect provides a standard for electrical resistance.

In recent years, scientists have discovered that some materials can exhibit what is known as the quantum spin Hall effect (QSHE), which depends on the “spin” attributes of the electron. Electrons not only carry charge, but also “spin.” Electrons can be thought of as tiny spinning tops that can rotate clockwise (in which case they are in a “spin-up” condition) or counter clockwise (“spin-down”). Notably, the robust edge states are present in the QSHE even without externally applied magnetic fields, making them amenable for developing new types of electronics.

In the Nature Physics article, the JQI-Harvard team is proposing a device supporting these “edge states” that are a hallmark of the QSHE, where light replaces the electrons. This device can be operated at room temperature and does not require any external magnetic field, not even the use of magnetic materials. They show that the resilience of the edge states can be used to engineer novel optical delay lines at the micrometer scale.

Hafezi explains that a key step is confining the photon pathways to two-dimensions: “In the QSHE, electrons move in a two-dimensional plane. Analogously, one can imagine a gas of photons moving in a two dimensional lattice of tiny glass racetracks called resonators.”

Resonators are circular light traps. Currently one-dimensional lines of these micro-racetracks can be used for miniaturized delay lines. Light, having particular colors (in other words, frequencies), can enter the array and become trapped in the racetracks. After a few swings around, the photons can hop to neighboring resonators. The researchers propose to extend this technology and construct a two-dimensional array of these resonators (see Figure).

Once light is in the array, how can it enter the quantum edge highway? The secret is in the design of the lattice of resonators and waveguides, which will determine the criteria for light hopping along the edge of the array rather than through the bulk. The photons will pile into the edge state only when the light has a particular color.

The fabrication process for these micro-resonators is susceptible to defects. This is true for both one- and two-dimensional resonator arrays, but it is the presence of quantum edge states that reduces loss in signal transmission.

When photons are in an edge state created by the 2D structure their transmission through the delay line is protected. Only along these highways will they will skirt around defects, unimpeded. They cannot do a U-turn upon encountering a defect because they do not have the appropriate light frequency, which is their ticket to enter the backwards-moving path.

Taylor explains an advantage of their proposal: “Right around the point where other [1D] technologies become operational, this same 2D technology also becomes operational. But thereafter, the transmitted signal will be much more robust for this approach to delay lines compared to the 1D approach.”

For example, the length of delay is given by the size of the array or the length of the photon’s path, whether 1D or 2D. However, as the number of resonators and optical features increases to accommodate longer delays, the inherent defects will eventually cause a roadblock for the photons, while the transmission using quantum pathways remains unobstructed.

The researchers hope that building these simple passive devices will lay the foundation for creating robust active circuit elements with photons, such as a transistor.

High resolution figures available upon request.

NIST TechBeat coverage of this research appears Monday August 22 (Media contact at NIST: Chad Boutin, boutin@nist.gov, (301) 975-4261)

**“Robust optical delay lines via topological protection,” Mohammad Hafezi, Eugene A. Demler, Mikhail D. Lukin, and Jacob M. Taylor, Nature Physics (Advance Online Publication 10.1038/NPHYS2063)

*The Joint Quantum Institute (JQI) is a research partnership between University of Maryland (UMD) and the National Institute of Standards and Technology, with the support and participation of the Laboratory for Physical Sciences. Created in 2006 to pursue theoretical and experimental studies of quantum physics in the context of information science and technology, JQI is located on UMD's College Park campus.

Research Contact:

Mohammad Hafezi
hafezi@umd.edu
Media contacts at Joint Quantum Institute:
Emily Edwards, 301-405-2291, eedwards@umd.edu
Phillip F. Schewe, 301-405-0989, pschewe@umd.edu

Emily Edwards | Newswise Science News
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>