Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milky Way struck 100 million years ago, still rings like a bell

29.06.2012
An international team of astronomers have discovered evidence that our Milky Way had an encounter with a small galaxy or massive dark matter structure perhaps as recently as 100 million years ago, and as a result of that encounter it is still ringing like a bell.
The discovery is based on observations of 300,000 nearby Milky Way stars by the Sloan Digital Sky Survey (SDSS). Stars in the disk of the Milky Way move up and down at a speed of about 20-30 kilometers per second while orbiting the center of the galaxy at a brisk 220 kilometers per second. The positions and motions of these nearby stars weren’t quite as regular as previously thought, according to the study results.

“We clearly observe unexpected differences in the Milky Way’s stellar distribution above and below the Galaxy’s mid-plane having the appearance of a vertical wave – something that nobody has seen before,” says Queen’s University physicist Larry Widrow, lead researcher on the project.

The researchers have not been able to identify the celestial object that passed through the Milky Way. It could have been one of the small satellite galaxies that move around the center of our galaxy, or an invisible structure such as a dark matter halo. It might not have been a single isolated event in the past, and it may even be ongoing.

The researchers discovered a small but statistically significant difference in the distribution of stars north and south of the Milky Way's midplane when analyzing SDSS data. For more than a year, they explored various explanations of this north-south asymmetry but were unable to solve the mystery. So they began exploring whether the data was telling them something about recent events in the Galaxy’s history.

Scientists know of more than 20 visible satellite galaxies that circle the center of the Milky Way, with masses ranging from one million to one billion solar masses. There may also be invisible satellites made of dark matter. There is six times as much dark matter in the universe as ordinary, visible matter. Astronomers' computer simulations have found that this invisible matter formed hundreds of massive structures that move around our Milky Way.

These dark matter satellites, because of their abundance, are more likely than the visible satellite galaxies to cut through the Milky Way’s mid-plane and cause vertical waves.

Computer simulations indicate that over the next 100 million years or so, our galaxy will “stop ringing". The north-south asymmetry will disappear and the vertical motions of stars in the solar neighborhood will revert back to their equilibrium orbits unless we get hit again.

Collaborators on the project include Brian Yanny and Scott Dodelson (US Department of Energy's Fermilab), Susan Gardner, (University of Kentucky) and Hsin-Yu Chen (University of Chicago).

The results have been published in The Astrophysical Journal Letters.

Michael Onesi | EurekAlert!
Further information:
http://www.queensu.ca
http://www.queensu.ca/news/articles/milky-way-struck-100-million-years-ago-still-rings-bell

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

The lightest electromagnetic shielding material in the world

02.07.2020 | Materials Sciences

Spintronics: Faster data processing through ultrashort electric pulses

02.07.2020 | Information Technology

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>