Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milky Way struck 100 million years ago, still rings like a bell

29.06.2012
An international team of astronomers have discovered evidence that our Milky Way had an encounter with a small galaxy or massive dark matter structure perhaps as recently as 100 million years ago, and as a result of that encounter it is still ringing like a bell.
The discovery is based on observations of 300,000 nearby Milky Way stars by the Sloan Digital Sky Survey (SDSS). Stars in the disk of the Milky Way move up and down at a speed of about 20-30 kilometers per second while orbiting the center of the galaxy at a brisk 220 kilometers per second. The positions and motions of these nearby stars weren’t quite as regular as previously thought, according to the study results.

“We clearly observe unexpected differences in the Milky Way’s stellar distribution above and below the Galaxy’s mid-plane having the appearance of a vertical wave – something that nobody has seen before,” says Queen’s University physicist Larry Widrow, lead researcher on the project.

The researchers have not been able to identify the celestial object that passed through the Milky Way. It could have been one of the small satellite galaxies that move around the center of our galaxy, or an invisible structure such as a dark matter halo. It might not have been a single isolated event in the past, and it may even be ongoing.

The researchers discovered a small but statistically significant difference in the distribution of stars north and south of the Milky Way's midplane when analyzing SDSS data. For more than a year, they explored various explanations of this north-south asymmetry but were unable to solve the mystery. So they began exploring whether the data was telling them something about recent events in the Galaxy’s history.

Scientists know of more than 20 visible satellite galaxies that circle the center of the Milky Way, with masses ranging from one million to one billion solar masses. There may also be invisible satellites made of dark matter. There is six times as much dark matter in the universe as ordinary, visible matter. Astronomers' computer simulations have found that this invisible matter formed hundreds of massive structures that move around our Milky Way.

These dark matter satellites, because of their abundance, are more likely than the visible satellite galaxies to cut through the Milky Way’s mid-plane and cause vertical waves.

Computer simulations indicate that over the next 100 million years or so, our galaxy will “stop ringing". The north-south asymmetry will disappear and the vertical motions of stars in the solar neighborhood will revert back to their equilibrium orbits unless we get hit again.

Collaborators on the project include Brian Yanny and Scott Dodelson (US Department of Energy's Fermilab), Susan Gardner, (University of Kentucky) and Hsin-Yu Chen (University of Chicago).

The results have been published in The Astrophysical Journal Letters.

Michael Onesi | EurekAlert!
Further information:
http://www.queensu.ca
http://www.queensu.ca/news/articles/milky-way-struck-100-million-years-ago-still-rings-bell

More articles from Physics and Astronomy:

nachricht ALMA discovers aluminum around young star
17.05.2019 | National Institutes of Natural Sciences

nachricht JQI researchers shed new light on atomic 'wave function'
17.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>