Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milky Way struck 100 million years ago, still rings like a bell

29.06.2012
An international team of astronomers have discovered evidence that our Milky Way had an encounter with a small galaxy or massive dark matter structure perhaps as recently as 100 million years ago, and as a result of that encounter it is still ringing like a bell.
The discovery is based on observations of 300,000 nearby Milky Way stars by the Sloan Digital Sky Survey (SDSS). Stars in the disk of the Milky Way move up and down at a speed of about 20-30 kilometers per second while orbiting the center of the galaxy at a brisk 220 kilometers per second. The positions and motions of these nearby stars weren’t quite as regular as previously thought, according to the study results.

“We clearly observe unexpected differences in the Milky Way’s stellar distribution above and below the Galaxy’s mid-plane having the appearance of a vertical wave – something that nobody has seen before,” says Queen’s University physicist Larry Widrow, lead researcher on the project.

The researchers have not been able to identify the celestial object that passed through the Milky Way. It could have been one of the small satellite galaxies that move around the center of our galaxy, or an invisible structure such as a dark matter halo. It might not have been a single isolated event in the past, and it may even be ongoing.

The researchers discovered a small but statistically significant difference in the distribution of stars north and south of the Milky Way's midplane when analyzing SDSS data. For more than a year, they explored various explanations of this north-south asymmetry but were unable to solve the mystery. So they began exploring whether the data was telling them something about recent events in the Galaxy’s history.

Scientists know of more than 20 visible satellite galaxies that circle the center of the Milky Way, with masses ranging from one million to one billion solar masses. There may also be invisible satellites made of dark matter. There is six times as much dark matter in the universe as ordinary, visible matter. Astronomers' computer simulations have found that this invisible matter formed hundreds of massive structures that move around our Milky Way.

These dark matter satellites, because of their abundance, are more likely than the visible satellite galaxies to cut through the Milky Way’s mid-plane and cause vertical waves.

Computer simulations indicate that over the next 100 million years or so, our galaxy will “stop ringing". The north-south asymmetry will disappear and the vertical motions of stars in the solar neighborhood will revert back to their equilibrium orbits unless we get hit again.

Collaborators on the project include Brian Yanny and Scott Dodelson (US Department of Energy's Fermilab), Susan Gardner, (University of Kentucky) and Hsin-Yu Chen (University of Chicago).

The results have been published in The Astrophysical Journal Letters.

Michael Onesi | EurekAlert!
Further information:
http://www.queensu.ca
http://www.queensu.ca/news/articles/milky-way-struck-100-million-years-ago-still-rings-bell

More articles from Physics and Astronomy:

nachricht Supercomputers without waste heat
07.12.2018 | Universität Konstanz

nachricht DF-PGT, now possible through massive sequencing techniques
06.12.2018 | Universitat Autonoma de Barcelona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>