Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For new microscope images, less is more

09.11.2011
When people email photos, they sometimes compress the images, removing redundant information and thus reducing the file size.

Compression is generally thought of as something to do to data after it has been collected, but mathematicians have recently figured out a way to use similar principles to drastically reduce the amount of data that needs to be gathered in the first place.

Now scientists from the University of Houston and Rice University in Houston, Texas have utilized this new theory, called compression sensing, to build a microscope that can make images of molecular vibrations with higher resolution and in less time than conventional methods. The microscope provides chemists with a powerful new experimental tool.

The main concept behind compressive sensing is something called "sparsity." If a signal is "sparse," the most important information is concentrated in select parts of the signal, with the rest containing redundant information that can be mathematically represented by zero or near-zeros numbers. The sparse signal that the Texas researchers were looking at came from a sum frequency generation (SFG) microscope, which shines two different frequency lasers at a surface and then measures the return signal to gather information about the vibration and orientation of the molecules at the surface boundary.

Traditional SFG microscopes scan a sample by systematically moving across it, but the resolution of these traditional scans is limited because as resolution increases the strength of the signal decreases. Instead of systematically scanning the boundary, the compressive sensing microscope gathered a set of pseudo-randomly positioned sampling points. If the important information was captured in the sample, then a series of mathematical steps could be used to construct the entire image. The researchers tested their microscope by imaging stripes of gold deposited on a silicon background and then coated with a chemical called octadecanethiol. The device sensed the stretching of the carbon-hydrogen bonds in the octadecanethiol layer and created images with 16 times more pixel density than was possible with the traditional scanning techniques. The new microscope could find applications in biomolecular imaging and the scientific study of interfaces.

Article: "Sum Frequency Generation-Compressive Sensing Microscope" is accepted for publication in the Journal of Chemical Physics.

Authors: Xiaojun Cai (1), Bian Hu (1), Ting Sun (2), Kevin F. Kelly (2), and Steven Baldelli (1).

(1) Department of Chemistry, University of Houston
(2) Department of Electrical and Computer Engineering, Rice University

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

Further reports about: email photos microscope images molecular vibrations

More articles from Physics and Astronomy:

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>