Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For new microscope images, less is more

09.11.2011
When people email photos, they sometimes compress the images, removing redundant information and thus reducing the file size.

Compression is generally thought of as something to do to data after it has been collected, but mathematicians have recently figured out a way to use similar principles to drastically reduce the amount of data that needs to be gathered in the first place.

Now scientists from the University of Houston and Rice University in Houston, Texas have utilized this new theory, called compression sensing, to build a microscope that can make images of molecular vibrations with higher resolution and in less time than conventional methods. The microscope provides chemists with a powerful new experimental tool.

The main concept behind compressive sensing is something called "sparsity." If a signal is "sparse," the most important information is concentrated in select parts of the signal, with the rest containing redundant information that can be mathematically represented by zero or near-zeros numbers. The sparse signal that the Texas researchers were looking at came from a sum frequency generation (SFG) microscope, which shines two different frequency lasers at a surface and then measures the return signal to gather information about the vibration and orientation of the molecules at the surface boundary.

Traditional SFG microscopes scan a sample by systematically moving across it, but the resolution of these traditional scans is limited because as resolution increases the strength of the signal decreases. Instead of systematically scanning the boundary, the compressive sensing microscope gathered a set of pseudo-randomly positioned sampling points. If the important information was captured in the sample, then a series of mathematical steps could be used to construct the entire image. The researchers tested their microscope by imaging stripes of gold deposited on a silicon background and then coated with a chemical called octadecanethiol. The device sensed the stretching of the carbon-hydrogen bonds in the octadecanethiol layer and created images with 16 times more pixel density than was possible with the traditional scanning techniques. The new microscope could find applications in biomolecular imaging and the scientific study of interfaces.

Article: "Sum Frequency Generation-Compressive Sensing Microscope" is accepted for publication in the Journal of Chemical Physics.

Authors: Xiaojun Cai (1), Bian Hu (1), Ting Sun (2), Kevin F. Kelly (2), and Steven Baldelli (1).

(1) Department of Chemistry, University of Houston
(2) Department of Electrical and Computer Engineering, Rice University

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

Further reports about: email photos microscope images molecular vibrations

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>