Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method proposed for detecting gravitational waves from ends of universe

17.05.2013
University of Nevada, Reno researcher proposes new approach to fill missing piece of Einstein's theory

A new window into the nature of the universe may be possible with a device proposed by scientists at the University of Nevada, Reno and Stanford University that would detect elusive gravity waves from the other end of the cosmos. Their paper describing the device and process was published in the prestigious physics journal Physical Review Letters.

"Gravitational waves represent one of the missing pieces of Einstein's theory of general relativity," Andrew Geraci, University of Nevada, Reno physics assistant professor, said. "While there is a global effort already out there to find gravitational waves, our proposed method is an alternate approach with greater sensitivity in a significantly smaller device.

"Our detector is complementary to existing gravitational wave detectors, in that it is more sensitive to sources in a higher frequency band, so we could see signals that other detectors might potentially miss."

Geraci and his colleague Asimina Arvanitaki, a post-doctoral fellow in the physics department at Stanford University, propose using a small, laser-cooled, tunable sensor that "floats" in an optical cavity so it is not affected by friction. Geraci is seeking funding to begin building a small prototype in the next year.

"Gravity waves propagate from the remote corners of our universe, they stretch and squeeze the fabric of space-time," Geraci said. "A passing gravity wave changes the physically measured distance between two test masses – small discs or spheres. In our approach, such a mass experiences minimal friction and therefore is very sensitive to small forces."

While indirect evidence for gravity waves was obtained by studying the changing orbital period of a neutron star binary, resulting in the 1993 Nobel Prize in Physics, gravity waves have yet to be directly observed.

"Directly detecting gravitational waves from astrophysical sources enables a new type of astronomy, which can give us "pictures" of the sky analogous to what we have by using telescopes," Geraci said. "In this way the invention of a gravitational wave detector, which lets us "see" the universe through gravity waves, is analogous to the invention of the telescope, which let us see the universe using light. Having such detectors will allow us to learn more about astrophysical objects in our universe, such as black holes."

The approach the authors describe can exceed the sensitivity of next-generation gravitational wave observatories by up to an order of magnitude in the frequency range of 50 to 300 kilohertz.

Their paper, "Detecting high-frequency gravitational waves with optically levitated sensors," appeared in Physical Review Letters, a publication of the physics organization American Physical Society.

Geraci also presented his research at the annual American Physical Society Meeting in Denver in April. The meeting is attended by particle physicists, nuclear physicists and astrophysicists to share new research results and insights.

Physical Review Letters is the world's foremost physics letters journal, providing rapid publication of short reports of significant fundamental research in all fields of physics. The international journal provides its diverse readership with weekly coverage of major advances in physics and cross disciplinary developments.

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of 18,000 students and is ranked in the top tier of the nation's best universities. Part of the Nevada System of Higher Education, the University has the system's largest research program and is home to the state's medical school. With outreach and education programs in all Nevada counties and with one of the nation's largest study-abroad consortiums, the University extends across the state and around the world. For more information, visit http://www.unr.edu.

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>