Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal leads to the desired configuration

09.10.2018

Scientists at the University of Basel have found a way to change the spatial arrangement of bipyridine molecules on a surface. These potential components of dye-sensitized solar cells form complexes with metals and thereby alter their chemical conformation. The results of this interdisciplinary collaboration between chemists and physicists from Basel were recently published in the scientific journal ACS Omega.

Dye-sensitized solar cells have been considered a sustainable alternative to conventional solar cells for many years, even if their energy yield is not yet fully satisfactory. The efficiency can be increased with the use of tandem solar cells, where the dye-sensitized solar cells are stacked on top of each other.


The configuration of the bipyridine molecule is changed by binding an iron atom (brown).

Image: University of Basel, Department of Physics


Scientists were able to determine the spatial arrangement of bipyridine molecules (gray) on a surface of nickel and oxygen atoms (yellow/red).

Image: University of Basel, Department of Physics

The way in which the dye, which absorbs sunlight, is anchored to the semiconductor plays a crucial role in the effectiveness of these solar cells. However, the anchoring of the dyes on nickel oxide surfaces – which are particularly suitable for tandem dye-sensitized cells – is not yet sufficiently understood.

Binding on surfaces

Over the course of an interdisciplinary collaboration, scientists from the Swiss Nanoscience Institute and the Departments of Physics and Chemistry at the University of Basel investigated how single bipyridine molecules bind to nickel oxide and gold surfaces.

Bipyridine crystals served as an anchor molecule for dye-sensitized cells on a semiconductor surface. This anchor binds the metal complexes, which in turn can then be used to bind the various dyes.

With the aid of scanning probe microscopes, the investigation determined that initially the bipyridine molecules bind flat to the surface in their trans configuration. The addition of iron atoms and an increase in temperature cause a rotation around a carbon atom in the bipyridine molecule and thus leads to the formation of the cis configuration.

“The chemical composition of the cis and trans configuration is the same, but their spatial arrangement is very different. “The change in configuration can be clearly distinguished on the basis of scanning probe microscope measurements,” confirms experimental physicist Professor Ernst Meyer.

Metal complexes in a modified configuration

This change in spatial arrangement is the result of formation of a metal complex, as confirmed by the scientists through their examination of the bipyridine on a gold surface.

During the preparation of the dye-sensitized solar cells, these reactions take place in a solution. However, the examination of individual molecules and their behavior is only possible with the use of scanning probe microscopes in vacuum.

“This study allowed us to observe for the first time how molecules that are firmly bound to a surface change their configuration,” summarizes Meyer. ”This enables us to better understand how anchor molecules behave on nickel oxide surfaces.”

Wissenschaftliche Ansprechpartner:

Professor Ernst Meyer, University of Basel, Department of Physics, +41 61 207 37 24, Email: ernst.meyer@unibas.ch

Originalpublikation:

Sara Freund, Rémy Pawlak, Lucas Moser, Antoine Hinaut, Roland Steiner, Nathalie Marinakis, Edwin C. Constable, Ernst Meyer, Catherine E. Housecroft, and Thilo Glatzel
Transoid-to-Cisoid Conformation Changes of Single Molecules on Surfaces Triggered by Metal Coordination
ACS Omega (2018)

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Metal-leads-to-the-desire...

Celine Eugster | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht Quantum gas turns supersolid
23.04.2019 | Universität Innsbruck

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>