Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the universe more accurately than ever before

07.03.2013
New results pin down the distance to the galaxy next door

Astronomers survey the scale of the Universe by first measuring the distances to close-by objects and then using them as standard candles [1] to pin down distances further and further out into the cosmos.


This artist's impression shows an eclipsing binary star system. As the two stars orbit each other they pass in front of one another and their combined brightness, seen from a distance, decreases. By studying how the light changes, and other properties of the system, astronomers can measure the distances to eclipsing binaries very accurately. A long series of observations of very rare cool eclipsing binaries has now led to the most accurate determination so far of the distance to the Large Magellanic Cloud, a neighboring galaxy to the Milky Way and crucial step in the determination of distances across the Universe.

Credit: ESO/L. Calçada

But this chain is only as accurate as its weakest link. Up to now finding an accurate distance to the Large Magellanic Cloud (LMC), one of the nearest galaxies to the Milky Way, has proved elusive. As stars in this galaxy are used to fix the distance scale for more remote galaxies, it is crucially important.

But careful observations of a rare class of double star have now allowed a team of astronomers to deduce a much more precise value for the LMC distance: 163 000 light-years.

"I am very excited because astronomers have been trying for a hundred years to accurately measure the distance to the Large Magellanic Cloud, and it has proved to be extremely difficult," says Wolfgang Gieren (Universidad de Concepción, Chile) and one of the leaders of the team. "Now we have solved this problem by demonstrably having a result accurate to 2%."

The improvement in the measurement of the distance to the Large Magellanic Cloud also gives better distances for many Cepheid variable stars [2]. These bright pulsating stars are used as standard candles to measure distances out to more remote galaxies and to determine the expansion rate of the Universe — the Hubble Constant. This in turn is the basis for surveying the Universe out to the most distant galaxies that can be seen with current telescopes. So the more accurate distance to the Large Magellanic Cloud immediately reduces the inaccuracy in current measurements of cosmological distances.

The astronomers worked out the distance to the Large Magellanic Cloud by observing rare close pairs of stars, known as eclipsing binaries [3]. As these stars orbit each other they pass in front of each other. When this happens, as seen from Earth, the total brightness drops, both when one star passes in front of the other and, by a different amount, when it passes behind [4].

By tracking these changes in brightness very carefully, and also measuring the stars' orbital speeds, it is possible to work out how big the stars are, their masses and other information about their orbits. When this is combined with careful measurements of the total brightness and colours of the stars [5] remarkably accurate distances can be found.

This method has been used before, but with hot stars. However, certain assumptions have to be made in this case and such distances are not as accurate as is desirable. But now, for the first time, eight extremely rare eclipsing binaries where both stars are cooler red giant stars have been identified [6]. These stars have been studied very carefully and yield much more accurate distance values — accurate to about 2%.

"ESO provided the perfect suite of telescopes and instruments for the observations needed for this project: HARPS for extremely accurate radial velocities of relatively faint stars, and SOFI for precise measurements of how bright the stars appeared in the infrared," adds Grzegorz Pietrzyński (Universidad de Concepción, Chile and Warsaw University Observatory, Poland), lead author of the new paper in Nature.

"We are working to improve our method still further and hope to have a 1% LMC distance in a very few years from now. This has far-reaching consequences not only for cosmology, but for many fields of astrophysics," concludes Dariusz Graczyk, the second author on the new Nature paper.

Notes

[1] Standard candles are objects of known brightness. By observing how bright such an object appears astronomers can work out the distance -- more distant objects appear fainter. Examples of such standard candles are Cepheid variables [2] and Type Ia supernovae. The big difficulty is calibrating the distance scale by finding relatively close examples of such objects where the distance can be determined by other means.

[2] Cepheid variables are bright unstable stars that pulsate and vary in brightness. But there is a very clear relationship between how quickly they change and how bright they are. Cepheids that pulsate more quickly are fainter than those that pulsate more slowly. This period-luminosity relation allows them to be used as standard candles to measure the distances of nearby galaxies.

[3] This work is part of the long-term Araucaria Project to improve measurements of the distances to nearby galaxies.

[4] The exact light variations depend on the relative sizes of the stars, their temperatures and colours and the details of the orbit.

[5] The colours are measured by comparing the brightness of the stars at different near-infrared wavelengths.

[6] These stars were found by searching the 35 million LMC stars that were studied by the OGLE project.

More information

This research was presented in a paper "An eclipsing binary distance to the Large Magellanic Cloud accurate to 2 per cent", by G. Pietrzyński et al., to appear in the 7 March 2013 issue of the journal Nature.

The team is composed of G. Pietrzyński (Universidad de Concepción, Chile; Warsaw University Observatory, Poland), D. Graczyk (Universidad de Concepción), W. Gieren (Universidad de Concepción), I. B. Thompson (Carnegie Observatories, Pasadena, USA), B., Pilecki (Universidad de Concepción; Warsaw University Observatory), A. Udalski (Warsaw University Observatory), I. Soszyński (Warsaw University Observatory), S. Kozłowski (Warsaw University Observatory), P. Konorski (Warsaw University Observatory), K. Suchomska (Warsaw University Observatory), G. Bono (Università di Roma Tor Vergata, Rome, Italy; INAF-Osservatorio Astronomico di Roma, Italy), P. G. Prada Moroni (Università di Pisa, Italy; INFN, Pisa, Italy), S. Villanova (Universidad de Concepción ), N. Nardetto (Laboratoire Fizeau, UNS/OCA/CNRS, Nice, France), F. Bresolin (Institute for Astronomy, Hawaii, USA), R. P. Kudritzki (Institute for Astronomy, Hawaii, USA), J. Storm (Leibniz Institute for Astrophysics, Potsdam, Germany), A. Gallenne (Universidad de Concepción), R. Smolec (Nicolaus Copernicus Astronomical Centre, Warsaw, Poland), D. Minniti (Pontificia Universidad Católica de Chile, Santiago, Chile; Vatican Observatory, Italy), M. Kubiak (Warsaw University Observatory), M. Szymański (Warsaw University Observatory), R. Poleski (Warsaw University Observatory), Ł. Wyrzykowski (Warsaw University Observatory), K. Ulaczyk (Warsaw University Observatory), P. Pietrukowicz (Warsaw University Observatory), M. Górski (Warsaw University Observatory), P. Karczmarek (Warsaw University Observatory).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

Photos of HARPS/3.6m: http://www.eso.org/public/images/?search=HARPS

Photos of NTT: http://www.eso.org/public/images/archive/search/?adv=&subject_name=New%20Technology%20Telescope

Photos taken using SOFI: http://www.eso.org/public/images/archive/search/?adv=&instrument=27

Contacts

Grzegorz Pietrzyński
Universidad de ConcepciónChile
Tel: 56-41-220-7268
Cell: 56-9-6245-4545
Email: pietrzyn@astrouw.edu.pl
Wolfgang Gieren
Universidad de ConcepciónChile
Tel: 56-41-220-3103
Cell: 56-9-8242-8925
Email: wgieren@astro-udec.cl
Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Cell: 49-151-1537-3591

Richard Hook | EurekAlert!
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>