Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Measuring Billions of Neutrinos Flowing Through Earth

Using one of the most sensitive neutrino detectors on the planet, an international team including physicists Laura Cadonati and Andrea Pocar at the University of Massachusetts Amherst are now measuring the flow of solar neutrinos reaching earth more precisely than ever before. The detector probes matter at the most fundamental level and provides a powerful tool for directly observing the sun’s composition.

Pocar, Cadonati and colleagues report in the current issue of Physical Review Letters that the Borexino instrument has now measured with high precision the flux of the beryllium seven (7Be) solar neutrino, abundant, low-energy particles once below the observable threshold. With this advance, they can now precisely study the behavior of solar neutrinos with kinetic energy below 1 megaelectron volt (MeV).

Photo: the scintillator at Borexino. The neutrino detector is located at the Laboratorio Nazionale del Gran Sasso underground physics laboratory in a 10 km-long tunnel about 5,000 feet (1.5 km) under Gran Sasso Mtn. in Italy. The instrument detects anti-neutrinos and other subatomic particles that interact in its special liquid center, a 300-ton sphere of scintillator fluid surrounded by a thin, 27.8-foot (8.5-meter) diameter transparent nylon balloon. This all “floats” inside another 700 tons of buffer fluid in a 45-foot (13.7-meter) diameter stainless steel tank immersed in ultra-purified water. The buffering fluid shields the scintillator from radiation from the outer layers of the detector and its surroundings.

Borexino scientists also recently reported the first observation of neutrinos produced in a little-studied solar nuclear process known as proton-electron-proton, or pep, and set of stringent limit on reactions involving carbon, nitrogen and oxygen (the CNO cycle) in the sun.

Cadonati says, “Borexino is the only detector capable of observing the entire spectrum of solar neutrinos at once. Our results, the culmination of 20 years of research, greatly narrow the observation precision. The data confirm the neutrino oscillations, flavor changes and flow predicted by models of the sun and particle physics.”

Of particular interest, Pocar and Cadonati note, is the Borexino instrument’s ability to more thoroughly test neutrino oscillation parameters, allowing an exploration of their characteristic non-zero mass, which does not fit the Standard Model of particle physics. “Our data can tell us about fundamental micro physics at the particle level,” says Cadonati. “Borexino is using neutrinos to explore the interior of the sun, looking for new, exciting clues to the mysteries of the universe we cannot see.” Pocar adds, “Our detector provides stringent tests of the three-neutrino oscillations model.”

Solar neutrinos are produced in nuclear processes and radioactive decays of several elements during fusion reactions at the sun’s core. As many as 65 billion of them stream out of the sun and hit every square centimeter of the earth’s surface [or 420 billion every square inch] every second. But because they only interact through the nuclear weak force they pass through matter unaffected, making them very difficult to detect and to distinguish from the trace nuclear decays of ordinary materials. The weak force is one of the four fundamental forces of nature, with gravity, electromagnetism and the strong force. It is responsible for the radioactive decay of unstable subatomic particles, with a short range of influence, about 1 percent of the diameter of a typical atomic nucleus.

The Borexino instrument, housed far beneath Italy’s Apennine Mountains, detects neutrinos as they interact with an ultra-pure organic liquid scintillator at the center of a large sphere surrounded by 2,000 tons of water. Its great depth and many onion-like protective layers maintain the core as the most radiation-free medium on the planet.

There are three neutrino types, or “flavors”: electron, muon and tau. Those produced in the sun are the electron type. As they travel away from their birthplace, they oscillate, or change from one flavor to another. A detector like Borexino can observe all three types in real time and measures each one’s energy, but it cannot distinguish between them. It’s more sensitive to the electron type so they are more likely to be seen.

The 7Be neutrino flux now being detected by Borexino is predicted by the standard solar model to make up about 10 percent of solar flow, Cadonati says. Earlier instruments in Canada and Japan designed to detect higher-energy neutrinos had already observed evidence of their flavor oscillations, probing 1/10,000 of the solar neutrino flux and their oscillations as they travel through solar matter. However, without data in the low-energy range as scanned by Borexino, physicists were not able to confirm the specific energy-dependent effect of solar neutrino oscillations. Borexino has now filled this gap and for the first time observed evidence of neutrino oscillation in vacuum, as they travel between the sun and Earth.

Pocar says that from the astrophysics angle, Borexino’s ability to conduct “precision physics” experiments and collect a large number of observations, with concomitant higher statistical power, is yielding data that show how our sun works. As for the possibility of discovering a new kind of neutrino coming from the sun, which is allowed by some theoretical extensions to the Standard Model of particle physics, he adds, “You always have the hope of seeing surprises, some small deviation from the expectations. And this you can only have if your accuracy and precision are good enough to see very small variations.”

In a companion paper, the Borexino team says their 7Be solar neutrino flux measurements show no flow differences between day and night. Some had hypothesized that one might exist because neutrinos pass through the earth’s bulk at night. But Pocar says, “The traverse through the earth seems not to change neutrinos’ flavor.”

In the future, the researchers hope to identify the origin of every neutrino type coming from the sun, particularly to assess the relative levels of carbon, nitrogen and oxygen there, to deepen understanding of how the sun evolved and how its workings are related to that of larger stars.

Borexino is an international collaboration funded by the U.S. National Science Foundation, the Italian National Institute for Nuclear Physics (INFN) which manages the Gran Sasso labs and similar organizations in Germany, Russia and Poland.

Laura Cadonati

Laura Cadonati | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Double layer of graphene helps to control spin currents
18.10.2019 | University of Groningen

nachricht Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling
17.10.2019 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>