Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maybe it wasn't the Higgs particle after all

10.11.2014

Last year CERN announced the finding of a new elementary particle, the Higgs particle. But maybe it wasn't the Higgs particle, maybe it just looks like it. And maybe it is not alone.

Many calculations indicate that the particle discovered last year in the CERN particle accelerator was indeed the famous Higgs particle. Physicists agree that the CERN experiments did find a new particle that had never been seen before, but according to an international research team, there is no conclusive evidence that the particle was indeed the Higgs particle.

The research team has scrutinized the existing scientific data from CERN about the newfound particle and published their analysis in the journal Physical Review D. A member of this team is Mads Toudal Frandsen, associate professor at the Center for Cosmology and Particle Physics Phenomenology, Department of Physics, Chemistry and Pharmacy at the University of Southern Denmark.

"The CERN data is generally taken as evidence that the particle is the Higgs particle. It is true that the Higgs particle can explain the data but there can be other explanations, we would also get this data from other particles", Mads Toudal Frandsen explains.

The researchers' analysis does not debunk the possibility that CERN has discovered the Higgs particle. That is still possible - but it is equally possible that it is a different kind of particle.

"The current data is not precise enough to determine exactly what the particle is. It could be a number of other known particles", says Mads Toudal Frandsen.

What was it then?

But if it wasn’t the Higgs particle, that was found in CERN's particle accelerator, then what was it?

"We believe that it may be a so-called techni-higgs particle. This particle is in some ways similar to the Higgs particle - hence half of the name”, says Mads Toudal Frandsen.

Although the techni-higgs particle and Higgs particle can easily be confused in experiments, they are two very different particles belonging to two very different theories of how the universe was created.

The Higgs particle is the missing piece in the theory called the Standard Model. This theory describes three of the four forces of nature. But it does not explain what dark matter is - the substance that makes up most of the universe. A techni-higgs particle, if it exists, is a completely different thing:

"A techni-higgs particle is not an elementary particle. Instead, it consists of so-called techni-quarks, which we believe are elementary. Techni-quarks may bind together in various ways to form for instance techni-higgs particles, while other combinations may form dark matter. We therefore expect to find several different particles at the LHC, all built by techni-quarks”, says Mads Toudal Frandsen.

New force needed for new particles

If techni-quarks exist, there must be a force to bind them together so that they can form particles. None of the four known forces of nature (gravity, the electromagnetic force, the weak nuclear force and the strong nuclear force) are any good at binding techni-quarks together. There must therefore be a yet undiscovered force of nature. This force is called the the technicolor force.

What was found last year in CERN's accelerator could thus be either the Higgs particle of the Standard Model or a light techni-higgs particle, composed of two techni-quarks.

Mads Toudal Frandsen believes that more data from CERN will probably be able to determine if it was a Higgs or a techni-higgs particle. If CERN gets an even more powerful accelerator, it will in principle be able to observe techni-quarks directly.

The rest of the team behind the scientific paper is: Alexander Belyaev and Matthew S. Brown from the University of Southampton, UK and Roshan Foadi from the University of Helsinki, Finland.

Ref: Technicolor Higgs boson in the light of LHC data. Phys. Rev. D 90, 035012th Alexander Belyaev, Matthew S. Brown, Roshan Foadi, and Mads T. Frandsen.


About elementary particles
An elementary particle is a particle that cannot be divided into smaller components. For a long time it was believed that atoms were elementary, but in the early 1900s, it became clear that atoms consist of protons and electrons, and later also of neutrons. In the mid-1900s, it became further clear that protons and neutrons are composed of quarks, held together by the strong nuclear force. Since then, more have been added. Elementary particles are today divided into two categories: building blocks of matter (fermions) and carriers of force (bosons).


Also read
Physicists suggest new way to detect dark matter
Universe stability and its mathematical underpinning
Now it is more likely than ever: There must be particles out there smaller than Higgs particle

Contact Mads Toudal Frandsen, associate professor. Tel: +45 6550 4521. Email: frandsen@cp3.dias.sdu.dk

Birgitte Svennevig | EurekAlert!
Further information:
http://sdu.dk/en/Om_SDU/Fakulteterne/Naturvidenskab/Nyheder/2014_10_29_technihiggs

Further reports about: CERN Higgs particle LHC clear dark dark matter determine neutrons particles physics protons

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>