Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematicians Develop New Method for Describing Extremely Complicated Shapes

31.07.2012
Mathematicians at the Institute for Advanced Study in New Jersey “bridged” topology and fractals and made a discovery that could lead to a new way of describing extremely complicated shapes such as the configuration of the tiniest defects in a metal or even the froth of a breaking wave.

Topology is a powerful branch of mathematics that looks at qualitative geometric properties such as the number of holes a geometric shape contains, while fractals are extremely complicated geometric shapes that appear similarly complicated even when viewed under a microscope of high magnification.

Bridging the topology and fractals, as described in the American Institute of Physics' Journal of Mathematical Physics (JMP), relies upon a recently developed mathematical theory, known as “persistent homology,” which takes into account the sizes and number of holes in a geometric shape. The work described in JMP is a proof of concept based on fractals that have already been studied by other methods – such as the shapes assumed by large polymer molecules as they twist or bend under random thermal fluctuation.

Many geometric structures with fractal-like complexity arise in nature, such as the configuration of defects in a metal or the froth of a breaking wave. Their geometry has important physical effects too, but until now we haven’t had a vocabulary rich enough to adequately describe these and other complicated shapes. The mathematicians plan to use the vocabulary provided by persistent homology methods to investigate and describe complicated shapes in a whole new way.

Articles featured in AIP press releases will be freely accessible online for a minimum of 30 days following publication.

Article: “Measuring shape with topology,” is published in the Journal of Mathematical Physics.

Link: http://jmp.aip.org/resource/1/jmapaq/v53/i7/p073516_s1

Authors: Robert MacPherson (1), Benjamin Schweinhart (1)

(1) Institute for Advanced Study, Princeton, NJ

Catherine Meyers | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Exotic spiraling electrons discovered by physicists
19.02.2019 | Rutgers University

nachricht Astronomers publish new sky map detecting hundreds of thousands of previously unknown galaxies
19.02.2019 | Universität Bielefeld

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>