Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express observes aurorae on the Red Planet

21.11.2008
Scientists using ESA’s Mars Express have produced the first crude map of aurorae on Mars. These displays of ultraviolet light appear to be located close to the residual magnetic fields generated by Mars’s crustal rocks. They highlight a number of mysteries about the way Mars interacts with electrically charged particles originating from the Sun.

The aurorae on Mars were discovered in 2004 using the SPICAM ultraviolet and infrared atmospheric spectrometer on board Mars Express. They are a powerful tool with which scientists can investigate the composition and structure of the Red Planet’s atmosphere.

Now Francois Leblanc, from the Service d’Aéronomie, IPSL/CNRS, France and colleagues have announced the results of coordinated observation campaigns using SPICAM, the MARSIS sub-surface sounding radar altimeter’s radar, and the energetic neutral atoms analyser, ASPERA’s electron spectrometer on Mars Express.

They have observed nine new auroral emission events, which have allowed them to make the first crude map of auroral activity on Mars. They see that the aurorae seem to be located near regions where the martian magnetic field is the strongest. MARSIS had previously observed higher-than-expected electrons in similar regions. This suggests, although it does not prove, that the magnetic fields help to create the aurorae.

On Earth, aurorae are more commonly known as the northern and southern lights. They are confined to the polar regions and shine brightly at visible as well as ultraviolet wavelengths. The existence of similar aurorae is well known on the giant planets of the Solar System. They occur wherever a planet’s magnetic field channels electrically charged particles into the atmosphere.

In all of these planets, the magnetic fields are large-scale structures generated deep in the interior of the planet. Mars lacks such a large-scale internal mechanism. Instead, it just generates small pockets of magnetism where areas of rocks in the crust of Mars are themselves magnetic. This results in many magnetic pole-type regions all over Mars.

The aurorae are caused by charged particles, in this case most probably electrons, colliding with molecules in the atmosphere. The electrons almost certainly come from the Sun, which constantly blows out electrically charged particles into space. Known as the solar wind, this constant stream of particles provides the source of electrons to generate the aurorae, as suggested by MARSIS and ASPERA.

But how the electrons are accelerated to sufficiently high energies to spark aurorae on Mars remains a mystery. “It may be that magnetic fields on Mars connect with the solar wind, providing a road for the electrons to travel along,” says Leblanc.

Any future astronauts expecting a spectacular light show, similar to aurorae on Earth, may be in for a disappointment. “We’re not sure whether the aurorae will be bright enough to be observed at visible wavelengths,” says Leblanc.

This is because the molecules responsible for the visible light show on Earth – molecular and atomic oxygen and molecular nitrogen – are not abundant enough in the martian atmosphere. SPICAM is designed to work at ultraviolet wavelengths and cannot see whether visible light is being emitted as well.

Nevertheless, there is plenty of work for the scientists to do. “There's now a large domain of physics that we have to explore in order to understand the aurorae on Mars. Thanks to Mars Express we have a lot of very good measurements to work with,” says Leblanc.

Agustin Chicarro | alfa
Further information:
http://www.esa.int/SPECIALS/Mars_Express/SEMY1B5DHNF_0.html

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>