Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of mysterious molecules in our galaxy sheds new light on century-old puzzle

09.01.2015

By analyzing the light of hundreds of thousands of celestial objects, Johns Hopkins astronomers from the Sloan Digital Sky Survey (SDSS) have created a unique map of enigmatic molecules in our galaxy that are responsible for puzzling features in the light from stars.

The map, which can be viewed at http://is.gd/dibmap, was unveiled Jan. 8 at the 225th meeting of the American Astronomical Society in Seattle.


This is a map of diffuse interstellar bands in the Milky Way.

Credit: T.W. Lan, G. Zasowski, B. Meacutenard, SDSS and 2MASS/UMass/IPAC-Caltech/NASA/NSF

"Seeing where these mysterious molecules are located is fascinating," said Brice Ménard, a professor in the Department of Physics & Astronomy at The Johns Hopkins University.

Gail Zasowski, another Johns Hopkins astronomer who played a key role in the project, added, "This new map required analyzing huge amounts of data and using the power of statistical analyses."

These puzzling features in the light from stars, which astronomers call "Diffuse Interstellar Bands" (DIBs), have been a mystery ever since they were discovered by astronomer Mary Lea Heger of Lick Observatory in 1922. While analyzing the light from stars, she found unexpected lines that were created by something existing in the interstellar space between the stars and the Earth.

Further research showed that these mysterious lines were due to a variety of molecules. But exactly which of many thousands of possible molecules are responsible for these features has remained a mystery for almost a century.

This new map, based on SDSS data that reveals the location of these enigmatic molecules, was compiled from two parallel studies.

Zasowski, a postdoctoral fellow, led one team that focused on the densest parts of our galaxy, using infrared observations that can cut through the dust clouds and reach previously obscured stars. Johns Hopkins graduate student Ting-Wen Lan led the other study, which used visible light to detect the mysterious molecules located above the plane of the galaxy, where their signatures are very weak and harder to measure.

"We do not have a full map yet, but we can already see a lot of interesting patterns," said Ménard, who worked on both teams.

Lan's team analyzed the light from more than half a million stars, galaxies, and quasars to detect the molecules' features in the regions well above and beyond the Milky Way's disk. In addition, the team was able to see the types of environments in which these molecules are more likely to be found. Some molecules like dense regions of gas and dust, and others prefer the lonelier spots far away from stars.

"These results will guide researchers toward the best observations and laboratory experiments to pin down the properties and nature of these enigmatic molecules," Lan said.

To look toward the galactic plane, hidden behind thick clouds of cosmic dust, Zasowski's team used data from the SDSS's APOGEE survey. APOGEE observations, which make use of infrared light, can easily see through interstellar dust and measure the properties of stars all over the galaxy.

The team members detected some of the mysterious features in front of about 60,000 stars in a wide range of environments and were even able to measure the motion of these molecules. "For the first time, we can see how these mysterious molecules are moving around the galaxy," Zasowski said. "This is extremely useful and brings in new connections between these molecules and the dynamics of the Milky Way."

All the recent findings concerning these mysterious features paint a picture of tough little molecules that can exist in a variety of environments, all over the galaxy.

"Almost a hundred years after their discovery, the exact nature of these molecules still remains a mystery, but we are getting one step closer to understanding what they are made of," Ménard said. "The era of Big Data in astronomy allows us to look at the universe in new ways. There is so much to explore with these large datasets. This is just the beginning."

###

The researchers used data from the Sloan Digital Sky Survey. The work was supported by National Science Foundation Grant AST-1109665 and NSF postdoctoral fellowship AST-1203017.

Photos of the researchers available; contact Phil Sneiderman.

Related links:

Brice Ménard's website: http://www.pha.jhu.edu/~menard/

Gail Zasowski's website: http://www.pha.jhu.edu/~zasowski/

Ting-Wen Lan's website: : http://www.pha.jhu.edu/~tlan

Johns Hopkins' Department of Physics and Astronomy: http://physics-astronomy.jhu.edu/

Phil Sneiderman | EurekAlert!

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>