Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating the texture of magnetism

06.02.2012
Derivation of equations that describe the dynamics of complex magnetic quasi-particles may aid the design of novel electronic devices
Knowing how to control the combined magnetic properties of interacting electrons will provide the basis to develop an important tool for advancing spintronics: a technology that aims to harness these properties for computation and communication. As a crucial first step, Naoto Nagaosa from the RIKEN Advanced Science Institute, Wako, and his colleagues have derived the equations that govern the motion of these magnetic quasi-particles1.

The magnetic behavior of a material is a result of a phenomenon known as spin. This can be thought of as the rotation of electrons and is usually visualized as an arrow pointing along the rotation axis. In some crystalline solids, neighboring electron spins can interact with each other such that the arrows form vortex-like patterns (Fig. 1). This spin ‘texture’ is robust and remains intact despite outside influences; it can also move through the material crystal, even though the atoms themselves remain stationary. Because of these properties, physicists often think of such spin vortices as particles in their own right; they call them skyrmions. The work of Nagaosa, with researchers from China, the Netherlands and Korea, provides a theoretical framework that describes skyrmion dynamics.

Skyrmions, and the ability to control them, have the potential to increase the packing density of magnetic recording media; as such, skyrmion-based devices are likely to be more efficient than conventional memories. “Skyrmions can be moved with a current density as much as a million times smaller than those needed to control magnetic structures, thus far,” explains Nagaosa.

The researchers theoretically investigated skyrmion crystals—ordered arrays of many skyrmions—that are supported by thin metallic films. Nagaosa and his collaborators2 had suggested previously that skyrmion crystals are more stable in thin films than they are in thicker ‘bulk’ materials, making films more amenable to practical applications. The equations of motion derived by Nagaosa and colleagues also showed: how the electrons are influenced by skyrmions; that skyrmions can become pinned to impurities in the film; and that the skyrmion trajectory bends away from the direction of an electrical current. The researchers called this phenomenon the skyrmion Hall effect because of its similarity to the sideways force that is exerted on an electron as it moves through a conductor in a magnetic field, which was discovered by Edwin Hall in 1879.
“Next we intend to study the effect of thermal fluctuations of the skyrmion structure and the optical manipulation of skyrmions,” says Nagaosa. “These are the important issues on the road towards applications.”

The corresponding author for this highlight is based at the Theoretical Design Team, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>