Making ultrafast lasers faster

Array of multi-beams for parallelized ultrafast laser processing. © Fraunhofer ILT, Aachen, Germany

Ultrashort pulsed (USP) or ultrafast lasers can do something very unique: They ablate almost any material without causing a thermal load of the adjacent material.

Their cuts are smooth and melt-free, even on a micron scale. All of this makes ultrafast lasers very interesting for industries such as tool making, where hard materials must be processed very precisely.

In recent years, much progress has been made in developing ultrafast laser sources: Lasers with higher average power, higher pulse energy or higher repetition rate have become available.

They have been complemented by beam delivery systems, either based on ultrafast scanners or some special diffractive optical elements (DOE), that spread one beam into a pattern of many identical beamlets.

Although laser sources and beam delivery systems have improved remarkably, there is still room to grow, in particular when it comes to high-power lasers and high-efficiency processing technology.

The optical dot-matrix printer

A consortium of six partners from industry and research is now planning the next step in the development of the USP-laser process technology.

They will develop a powerful 1 kW laser source and combine it with a special optical system that delivers a pattern of more than 60 switchable beamlets. One can see this as a late descendant of the dot-matrix printer.

The consortium consists of the research institute Fraunhofer ILT and the RWTH Aachen University from Germany as well as Amplitude Systèmes, LASEA France, AA Opto-Electronic from France and LASEA from Belgium as industrial research and development partners.

The European Commission is supporting the project, named “MultiFlex”, within the framework of the program ICT-04-2018 for three years with an amount of € 4.7 million.

Delivery: High-end system ready for industrial use

The partners are looking beyond the already challenging system components: They intend to deliver a prototype with all the necessary control technology ready for the shop floor. It will start with a 1 kW laser machine that can deliver up to 1 mJ pulse energy either at the regular 1 MHz repetition rate or in a burst mode with less than 20 ns pulse separation.

The optical system converts the single laser beam into a pattern of more than 60 beamlets, where each single beamlet can be turned on and off separately. The resulting pattern can be directed onto the workpiece with a fast scanner. The complex system will be complemented by an industry grade control unit.

The resulting prototype will undergo an extensive series of tests and be validated in use cases provided by associated industrial end users. It has already been estimated that the prototype will improve the productivity by about 100 fold compared to current standard ultrafast laser processing systems.

This will not only allow for significant progress in the tool making industry, but also opens up new perspectives for the application of ultrafast lasers for the texturing and functionalization of large surfaces.

Funding

This project receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825201.

Dr. Johannes Finger
Group Micro- and Nano Structuring
Telephone +49 241 8906-472
johannes.finger@ilt.fraunhofer.de

https://www.ilt.fraunhofer.de/en

Media Contact

Petra Nolis M.A. Fraunhofer-Institut für Lasertechnik ILT

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors