Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz physicists propose a new method for monitoring nuclear waste

06.12.2017

Scientists demonstrate scenarios for using neutrino detectors in nuclear interim storage facilities

New scientific findings suggest neutrino detectors may play an important role in ensuring better monitoring and safer storage of radioactive material in nuclear waste repository sites. Researchers at Johannes Gutenberg University Mainz (JGU) in Germany have made calculations to ascertain the neutrino radiation of spent nuclear fuel emits. Their figures show that neutrino detectors could be useful in certain scenarios.


A prototype antineutrino detector for monitoring nuclear waste repository sites

photo/©: Virginia Tech, Center for Neutrino Physics


Decontamination of a disused nuclear complex in the U. S. state of Washington. Such measures could be supported by employing antineutrino detectors.

photo/©: Photo courtesy U.S. Department of Energy

Neutrinos undergo almost no interaction with matter, and so they can penetrate practically unhindered through the Earth and any man-made shield. "Every second about 100 billion neutrinos per square centimeter strike the Earth from the Sun, both day and night. Because neutrinos only weakly interact with matter, they are among the most difficult elementary particles to detect," explained Professor Joachim Kopp from the PRISMA Cluster of Excellence at Mainz University.

Kopp is an expert in the field of theoretical neutrino physics and received an ERC Starting Grant for his research in 2014, one of the most highly endowed awards from the EU.

The beta decay of radioactive fission products generates neutrinos in very large quantities. However, a minimum energy of 1.8 mega-electron volts is required to detect these particles via the process of inverse beta decay. Only then can they be registered in a scintillation detector, a tank filled with special mineral oils. The high-energy particles interact with the protons in the tank, emitting a characteristic light signal.

Such neutrino detectors are already being employed experimentally to monitor nuclear power plants while in operation. However, for monitoring stored nuclear waste there are, as yet, no detectors. "In-service reactors produce considerably more neutrinos than decommissioned reactors or stored radioactive material," explained Kopp, noting that monitoring the whereabouts of nuclear waste is particularly important at present for security reasons.

Neutrino monitoring of spent nuclear fuel

For their paper in Physical Review Applied, Joachim Kopp and Vedran Brdar from JGU and Patrick Huber from Virginia Tech in the U. S. first calculated the neutrino flux emitted by radioactive strontium-90 and other fission products in spent nuclear fuel. They then considered several scenarios detailing how or where the emissions could be detected. In one of these, a suitable detector would be particularly useful for monitoring above-ground storage facilities, for example, on-site at nuclear power plants.

A neutrino detector in this scenario could detect if radioactive material had been removed without being documented. According to the calculations, measurements using a detector with a capacity of 40 tons would have to run for about a year. "That sounds like a long time, but all that would be required would be to position the detector and wait. The big advantage is that we could verify the contents of a container without ever having to open it up," explained Kopp.

It would usually be enough to place the detector 10 to 100 meters away, for example, on a truck trailer. According to Kopp, this method might be particularly appropriate in trying to ensure non-proliferation of nuclear weapons-grade material, which is why the European Atomic Energy Community EURATOM has already expressed an interest in this research.

In a second scenario, the physicists calculated a situation in which underground repositories are to be monitored, giving as an example the proposed Yucca Mountain repository site in Nevada. According to this, a significant neutrino flux would be detected, even on the surface of a small 10-ton tank. "However, some realistic hazards, such as the escape of very small quantities of radioactive material, would unfortunately not be detected," said Kopp.

A third scenario that the scientists dealt with in their calculations was detecting incompletely documented storage facilities, such as those at the Hanford Site, a now-disused nuclear complex in the U. S. state of Washington from the time of the Cold War. "In this case, the current detector technology is still not entirely sufficient, among other things because cosmic radiation distorts the measurements," said Kopp. However, the first prototypes for such detectors avoiding this problem already exist.

Pictures:
http://www.uni-mainz.de/bilder_presse/08_physik_thep_neutrino_detektor_01.jpg
A prototype antineutrino detector for monitoring nuclear waste repository sites
photo/©: Virginia Tech, Center for Neutrino Physics

http://www.uni-mainz.de/bilder_presse/08_physik_thep_neutrino_detektor_02.jpg
Decontamination of a disused nuclear complex in the U. S. state of Washington. Such measures could be supported by employing antineutrino detectors.
photo/©: Photo courtesy U.S. Department of Energy

Publication:
Vedran Brdar, Patrick Huber, Joachim Kopp
Antineutrino monitoring of spent nuclear fuel
Physical Review Applied, 5 December 2017
DOI: 10.1103/PhysRevApplied.8.054050
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.8.054050

Contact:
Professor Dr. Joachim Kopp
Theoretical High Energy Physics (THEP)
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-26117
e-mail: jkopp@uni-mainz.de
http://www.staff.uni-mainz.de/jkopp/

Weitere Informationen:

http://www.prisma.uni-mainz.de/846.php – Professor Dr. Joachim Kopp ;
http://www.prisma.uni-mainz.de/ – Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA) Cluster of Excellence

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>