Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The “Magnificent Seven” of European astroparticle physics unveiled to the world

Today Europeans presented to the world their strategy for the future of astroparticle physics. What is dark matter? What is the origin of cosmic rays? What is the role of violent cosmic processes? Can we detect gravitational waves?
With seven types of major large-scale projects physicists want to find the answers to some of the most exciting questions about the Universe:

• CTA, a large array of Cherenkov Telescopes for detection of cosmic high-energy gamma rays

• KM3NeT, a cubic kilometre-scale neutrino telescope in the Mediterranean Sea

• Ton-scale detectors for dark matter searches

• A ton-scale detector for the determination of the fundamental nature and mass of neutrinos

• A Megaton-scale detector for proton decay’s search, neutrino astrophysics & investigation of neutrino properties

• A large array for the detection of charged cosmic rays

• A third-generation underground gravitational antenna

“New exciting discoveries lie ahead; it is up to us to take the lead on them in the next decade.” says Christian Spiering from DESY – Germany, Chairman of the Roadmap Committee. After two years of roadmap process, the publication of The European Strategy for Astroparticle Physics is an important step for the field outlining a leading role for Europe in this increasingly globalised endeavour.

From undersea and underground laboratories to the most isolated deserts and outer space, astroparticle physics experiments accept very exciting challenges. It is a promising and rapidly growing field of research at the intersection of particle physics, cosmology and astrophysics, aiming to detect the most elusive particles, and to penetrate the most intimate secrets of the Universe. "If I was a young man, I would definetely go to astroparticle physics" said Carlo Rubbia, Noble Prize in physics in 1984.

To insure the coordination of astroparticle physics at the European level, research agencies from 13 countries joined their efforts within the ASPERA* European network, an ERA-Net funded by the European Commission. Thanks to the work achieved through ASPERA, European countries for the first time have a common tool to programme jointly and share their efforts in astroparticle physics.

This ambitious programme will gather European countries to open new exciting windows to the Universe, and the most advanced projects such as CTA (high-energy gamma rays) and KM3NeT (high-energy neutrinos) could start construction by 2012. The complete funding of this billion-scale programme would need a smooth yearly increase of current investments for astroparticle physics, amounting to an integrated increase of about 50% in a ten-year period.

“The timely realization of the Magnificent Seven is a big challenge” says the coordinator of ASPERA Prof. Stavros Katsanevas (IN2P3/CNRS) - France, “But we are confident that none will be killed contrary to what happens in the film, as the European agencies and ApPEC* support these priorities and the same also emerge in other continents. It is important that we coordinate and share costs not only inside Europe but on a global scale.”

This is why beyond Europe, ASPERA welcomes on 29 and 30 September 2008 200 scientists and officials of funding agencies from all over the world, in view of international collaboration.

European astroparticle physicists also affirmed their support to Earth- and space-based missions to explore the phenomenon of “dark energy”, to the concept of a cooperative network of deep underground laboratories, and to a common call for innovative technologies in the field of astroparticle physics. In addition, they declared their wish to see the formation of a European Centre for Astroparticle Physics Theory.

Pictures available at:
Find the European strategy for astroparticle physics online:
*Notes for editors:
ApPEC is the Astroparticle Physics European Coordination. It was founded in 2001 when six European scientific agencies took the initiative to coordinate and encourage astroparticle physics in Europe.

ASPERA, the AStroParticle European Research Area is a network of European national funding agencies responsible for astroparticle physics. ASPERA is funded by the European Commission as an ERA-NET. It comprises the following agencies: FNRS(Belgium), FWO(Belgium), MEYS(Czech Republic), CEA(France), CNRS(France), BMBF(Germany), PTDESY(Germany), DEMOKRITOS(Greece), INFN(Italy), FOM(Netherlands), FCT(Portugal), IFIN-HH(Romania), FECYT(Spain), MEC(Spain), SNF(Switzerland), VR(Sweden), STFC(United Kingdom) and the European organization CERN.


Astroparticle physics for Europe
ASPERA press officer – CERN
Arnaud Marsollier
+41 22 767 37 09
ASPERA coordinator
Dr. Stavros Katsanevas
+33 1 44 96 47 57
Chairman of ASPERA Roadmap
Dr. Christian Spiering
+49 33762 77218

Arnaud Marsollier | CERN
Further information:

More articles from Physics and Astronomy:

nachricht It’s closeness that counts: how proximity affects the resistance of graphene
28.01.2020 | Georg-August-Universität Göttingen

nachricht Quantum physics: On the way to quantum networks
27.01.2020 | Ludwig-Maximilians-Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

Latest News

Fungi as food source for plants: Biologists of the University of Bayreuth publish surprising findings

29.01.2020 | Life Sciences

High gas concentrations over the Red Sea

29.01.2020 | Earth Sciences

Intelligent robot system at the TU Bergakademie Freiberg improves drinking water control in inland waters

29.01.2020 | Information Technology

Science & Research
Overview of more VideoLinks >>>