Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetization in small components can now be filmed in the laboratory

12.09.2018

Technique for imaging magnetization dynamics developed in a joint project

In the future, today's electronic storage technology may be superseded by devices based on tiny magnetic structures. These individual magnetic regions correspond to bits and need to be as small as possible and capable of rapid switching. In order to better understand the underlying physics and to optimize the components, various techniques can be used to visualize the magnetization behavior.


Time-resolved measurement of the motion of a magnetic vortex core in the presence of an oscillating magnetic field

Ill./©: Daniel Schönke

Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have now refined an electron microscope-based technique that makes it possible not only to capture static images of these components but also to film the high-speed switching processes. They have also employed a specialized signal processing technology that suppresses image noise.

"This provides us with an excellent opportunity to investigate magnetization in small devices," Daniel Schönke of the JGU Institute of Physics explained. The research was carried out in cooperation with Surface Concept GmbH and the results have been published in the journal Review of Scientific Instruments.

Scanning electron microscopy with polarization analysis is a lab-based technique for imaging magnetic structures. Compared with optical methods, it has the advantage of high spatial resolution. The main disadvantage is the time it takes to acquire an image in order to achieve a good signal-to-noise ratio.

However, the time required to measure the periodically excited and therefore periodically changing magnetic signal can be shortened by using a digital phase-sensitive rectifier that only detects signals of the same frequency as the excitation.

Such signal processing requires measurements to be time-resolved. The instrumentation developed by the scientists at JGU provides a time resolution of better than 2 nanoseconds. As a result, the technique can be employed to investigate high-speed magnetic switching processes. It also makes it possible to both capture images and select individual images at a defined point in time within the entire excitation phase.

New technique compares favorably with more complex imaging techniques

This development means the technique is now comparable with the much more complex imaging techniques used at large accelerator facilities and opens up the possibility of investigating the magnetization dynamics of small magnetic components in the laboratory.

The research was carried out within the framework of the Collaborative Research Center CRC/Transregio 173 "Spin+X: Spin in its collective environment," which is based at Johannes Gutenberg University Mainz and TU Kaiserslautern and financed by the German Research Foundation (DFG). The CRC/TRR involves interdisciplinary teams of researchers from the fields of chemistry, physics, mechanical engineering, and process engineering, who undertake research into magnetic effects with a view to converting these into applications. The primary focus is on the phenomenon of spin. Physicists use this term to refer to the intrinsic angular momentum of a quantum particle, such as an electron or proton. This underlies many magnetic effects.

The development of the novel technique results from the successful and close collaboration of the researchers with the company Surface Concept GmbH, a spin-off of Johannes Gutenberg University Mainz.

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_sempa_system_bildgebung.jp...
Time-resolved measurement of the motion of a magnetic vortex core in the presence of an oscillating magnetic field
Ill./©: Daniel Schönke

Wissenschaftliche Ansprechpartner:

Daniel Schönke
Condensed Matter Physics
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23620
fax +49 6131 39-24076
e-mail: dschoenk@uni-mainz.de

Professor Dr. Mathias Kläui
Condensed Matter Physics
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/

Originalpublikation:

Daniel Schönke et al.
Development of a scanning electron microscopy with polarization analysis system for magnetic imaging with ns time resolution and phase-sensitive detection
Review of Scientific Instruments, 20 August 2018
DOI: 10.1063/1.5037528
https://aip.scitation.org/doi/10.1063/1.5037528

Weitere Informationen:

https://www.klaeui-lab.physik.uni-mainz.de/ – Kläui-Laboratory at the JGU Institute of Physics ;
https://www.blogs.uni-mainz.de/fb08-iph-eng/ – Institute of Physics at JGU ;
https://www.uni-kl.de/trr173/ – CRC/Transregio 173 "Spin+X: Spin in its collective environment" ;
http://www.uni-mainz.de/presse/aktuell/4356_DEU_HTML.php – press release " Construction set of magnon logic extended: Magnon spin currents can be controlled via spin valve structure" (14 March 2018)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>