Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic nano-imaging on a table top

20.04.2018

Researchers capture nanoscale images of magnetic domains with laser as ultrashort flash

Just like flash photography can “freeze” and capture the motion of a child running in a dimly lit room, lasers can freeze motion as fast as electrons orbiting atoms. In a process called high-harmonic generation (HHG), lasers can form extremely short pulses with wavelengths down to one nanometer, which would enable observation in slow motion of a movie with nanometric-spatial and femtosecond-temporal resolution – one millionth of a millimeter and one millionth of a billionth of a second.


An image of worm-like magnetic domains in the sample, retrieved algorithmically from the scattered light.

Photo: University of Göttingen


The scattering from the structure as recorded on the camera, in which the magnetic contribution is invisible to the naked eye.

Photo: University of Göttingen

A research team at the Universities of Göttingen and Augsburg in Germany in collaboration with Technion in Israel have now used femtosecond HHG pulses for the first time to capture images of magnetic domains. Published in the open-access journal Science Advances, the work establishes a highly-sought after technology: magneto-optical nano-imaging in a table-top scheme.

Magnetic orientation at the nanoscale has immense technological importance, serving as a basis for new generations of storage and logic devices. Understanding and controlling dynamic microscopic phenomena requires means to image rapid magnetic phenomena, such as switching processes.

Circularly polarized light is sensitive to the magnetization of materials and can thus be used to conduct microscopy of magnetic structures. Unfortunately, in order to achieve a resolution in the relevant range of a few tens of nanometers, very short wavelength is required. As a result, corresponding high-resolution microscopes previously required x-radiation from large particle accelerators such as synchrotrons and free-electron lasers.

The researchers addressed the long-standing challenge of achieving magnetic imaging with nanometric resolution using a laboratory-scale source of short-wavelength pulses of light, namely high harmonics. Importantly, the image resolution they reached, below 50 nm, is competitive with the resolution achievable in large accelerators.

The first key ingredient was the use of circularly-polarized high harmonics, for which a technique recently developed at Technion was employed. Moreover, as the magnetization-related signal is much smaller than typical non-magnetic effects, identifying the magnetic contrast may be described as searching for a needle in a haystack.

However, the team employed a trick that enhances the magnetic signal: Part of the light beam passed through and scattered off the magnetic sample, while another part was guided through auxiliary channels nearby. The interference between the magnetically scattered light and the light passing the channels increased the signal approximately 10-fold. Combining the auxiliary illumination with a control of the circular polarization rotation (clockwise or anti-clockwise) amplified and isolated the weak magnetic scattering – loosely speaking, making the “hidden needle” glow.

The team, led by Professor Claus Ropers in Göttingen, believe that numerous aspects may benefit from their demonstrated imaging approach. “Imaging is a very basic and versatile use of light,” says author Dr. Ofer Kfir. “Polarization contrast in light microscopy is already very powerful. Much higher resolutions are now possible by the shorter wavelengths, and this really gives us new access to nanoscale phenomena in magnetism and other areas.

The concept of signal enhancement by auxiliary light reduces the requirements on a source’s brightness, which makes the approach even more widely applicable.” Author Dr. Sergey Zayko notes another immediate goal for the future: “In addition, the femtosecond pulse duration of the HHG source will provide us with direct ultrafast movies of magnetic phenomena on the nanoscale.”

Original publication: Kfir, Zayko et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Science Advances December 2017. Doi: 10.1126/sciadv.aao4641.

Contact:
Dr. Ofer Kfir and Dr. Sergey Zayko
University of Göttingen
Faculty of Physics – 4th Physical Institute and Institute for X-ray Physics
Friedrich-Hund-Platz 1, 37077 Göttingen, Phone +49 551 39-12240
Emails: sergey.zayko@uni-goettingen.de, ofer.kfir@phys.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/en/576551.html

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>