Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic nano-imaging on a table top

20.04.2018

Researchers capture nanoscale images of magnetic domains with laser as ultrashort flash

Just like flash photography can “freeze” and capture the motion of a child running in a dimly lit room, lasers can freeze motion as fast as electrons orbiting atoms. In a process called high-harmonic generation (HHG), lasers can form extremely short pulses with wavelengths down to one nanometer, which would enable observation in slow motion of a movie with nanometric-spatial and femtosecond-temporal resolution – one millionth of a millimeter and one millionth of a billionth of a second.


An image of worm-like magnetic domains in the sample, retrieved algorithmically from the scattered light.

Photo: University of Göttingen


The scattering from the structure as recorded on the camera, in which the magnetic contribution is invisible to the naked eye.

Photo: University of Göttingen

A research team at the Universities of Göttingen and Augsburg in Germany in collaboration with Technion in Israel have now used femtosecond HHG pulses for the first time to capture images of magnetic domains. Published in the open-access journal Science Advances, the work establishes a highly-sought after technology: magneto-optical nano-imaging in a table-top scheme.

Magnetic orientation at the nanoscale has immense technological importance, serving as a basis for new generations of storage and logic devices. Understanding and controlling dynamic microscopic phenomena requires means to image rapid magnetic phenomena, such as switching processes.

Circularly polarized light is sensitive to the magnetization of materials and can thus be used to conduct microscopy of magnetic structures. Unfortunately, in order to achieve a resolution in the relevant range of a few tens of nanometers, very short wavelength is required. As a result, corresponding high-resolution microscopes previously required x-radiation from large particle accelerators such as synchrotrons and free-electron lasers.

The researchers addressed the long-standing challenge of achieving magnetic imaging with nanometric resolution using a laboratory-scale source of short-wavelength pulses of light, namely high harmonics. Importantly, the image resolution they reached, below 50 nm, is competitive with the resolution achievable in large accelerators.

The first key ingredient was the use of circularly-polarized high harmonics, for which a technique recently developed at Technion was employed. Moreover, as the magnetization-related signal is much smaller than typical non-magnetic effects, identifying the magnetic contrast may be described as searching for a needle in a haystack.

However, the team employed a trick that enhances the magnetic signal: Part of the light beam passed through and scattered off the magnetic sample, while another part was guided through auxiliary channels nearby. The interference between the magnetically scattered light and the light passing the channels increased the signal approximately 10-fold. Combining the auxiliary illumination with a control of the circular polarization rotation (clockwise or anti-clockwise) amplified and isolated the weak magnetic scattering – loosely speaking, making the “hidden needle” glow.

The team, led by Professor Claus Ropers in Göttingen, believe that numerous aspects may benefit from their demonstrated imaging approach. “Imaging is a very basic and versatile use of light,” says author Dr. Ofer Kfir. “Polarization contrast in light microscopy is already very powerful. Much higher resolutions are now possible by the shorter wavelengths, and this really gives us new access to nanoscale phenomena in magnetism and other areas.

The concept of signal enhancement by auxiliary light reduces the requirements on a source’s brightness, which makes the approach even more widely applicable.” Author Dr. Sergey Zayko notes another immediate goal for the future: “In addition, the femtosecond pulse duration of the HHG source will provide us with direct ultrafast movies of magnetic phenomena on the nanoscale.”

Original publication: Kfir, Zayko et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Science Advances December 2017. Doi: 10.1126/sciadv.aao4641.

Contact:
Dr. Ofer Kfir and Dr. Sergey Zayko
University of Göttingen
Faculty of Physics – 4th Physical Institute and Institute for X-ray Physics
Friedrich-Hund-Platz 1, 37077 Göttingen, Phone +49 551 39-12240
Emails: sergey.zayko@uni-goettingen.de, ofer.kfir@phys.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/en/576551.html

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Quantum gas turns supersolid
23.04.2019 | Universität Innsbruck

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>