Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic micro-boats

21.03.2019

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also – in another crystalline form - of the flat magnets that could be found on so many refrigerators. Those two forms of iron oxide have different magnetization and response to the presence of a magnetic field because of a change in how the small magnetic domains inside the material are oriented.


Scientists at the Max Planck Institute for Polymer Research can use a magnetic field to determine the structure that is formed by so-called "superparamagnetic nanoparticles".

MPI-P, Lizenz CC-BY-SA

On the nanometer scale – in the size range of approximately 30 millionth of a millimeter – when the size of the object is the same as the size of a magnetic domain, a new effect called “superparamagnetism” comes into play: superparamagnetic nanoparticles display high magnetization only in the presence of a magnetic field, they do not retain any magnetization when the magnetic field is removed.

This reversible effect could be used in future medical applications, where drugs can be noninvasively guided in blood to a targeted site. However, when several of these nanoparticles aggregate to form larger structures – so-called clusters - they lose their superparamagnetic properties. Additionally, it is a technical challenge to create arbitrary shapes with such a material.

In a collaboration between scientists from the group of Dr. Héloïse Thérien-Aubin in the department of Prof. Katharina Landfester specialized in the preparation of nanoparticles and scientist from the department of Prof. Hans-Jürgen Butt working on water-repellent surfaces, a new method has been established to solve these two problems.

First, superparamagnetic nanoparticles made of iron-oxide were encapsulated in a protective shell made of polystyrene, a non-magnetic plastic, to preserve their superparamagnetism even during the formation of large aggregates. The protective shell acts in this case as a spacer between the nanoparticles.

After the creation of these nanoparticles, the scientists put droplets consisting of superparamagnetic nanoparticles and water on a surface on which, like on a lotus leaf, water is repelled. Therefore, the drops form a spherical shape. After evaporation of the water, a three-dimensional structure consisting only of nanoparticles can be obtained.

The researchers could show that they can vary the size and the shape of the resulting structure if they vary the concentration of the nanoparticles in water and use an external magnet while evaporating the water.

Changing the concentration of the nanoparticles leads to different structure sizes from several micrometers (millionth of a meter) to several millimeters. A variation of the power of the external magnetic field leads to different shapes, as the nanoparticles interact with the magnet and interact between themselves.

With this preparation process, non-spherical structures, such as barrel-like, cone-like or two-tower-like, were obtained. “This represents a big step towards the use of superparamagnetic microstructures in applications, as our method is very versatile and very efficient in terms of time and material”, says Héloïse Thérien-Aubin.

The scientific results have been published in the renowned journal “ACS Nano” of the American Chemical Society.

About Héloïse Thérien-Aubin
Héloïse Thérien-Aubin studied chemistry at the Université de Montréal in Canada. After her Ph.D. in the group of Prof. Julian Zhu, she joined the group of Prof. Christopher K. Ober in the department of Materials Science and Engineering at Cornell University, and then, the group of Prof. Eugenia Kumacheva at the University of Toronto. In 2016, she joined the MPI-P as a group leader in the department of Prof. Katharina Landfester. Her research interests range from the conformation and dynamic of polymers in confined environments to the preparation of addressable nanocolloids.

Wissenschaftliche Ansprechpartner:

Héloïse Thérien-Aubin
Ackermannweg 10
55128 Mainz
Tel.: 06131 – 379 525
Mail: therien@mpip-mainz.mpg.de

Originalpublikation:

https://pubs.acs.org/doi/10.1021/acsnano.8b07783

Weitere Informationen:

http://www.mpip-mainz.mpg.de/~therien/

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung
Further information:
http://www.mpip-mainz.mpg.de
http://www.mpip-mainz.mpg.de/presse/pm-en-2019-05

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>