Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magic wavelengths

12.05.2015

Tuning up Rydberg atoms for quantum information applications

Rydberg atoms, atoms whose outermost electrons are highly excited but not ionized, might be just the thing for processing quantum information.


Rubidium atoms are held in place using a pair of laser beams at a wavelength of 1064 nm. Two other beams, promote the atoms from their ground state (5s) first to the 5p state and then to the still higher 18 s state. - See more at: http://jqi.umd.edu/news/magic-wavelengths#sthash.GGwhXrVu.dpuf

Credit: Kelley/JQI

These outsized atoms can be sustained for a long time in a quantum superposition condition -- a good thing for creating qubits -- and they can interact strongly with other such atoms, making them useful for devising the kind of logic gates needed to process information. Scientists at JQI (*) and at other labs are pursuing this promising research area.

One problem with Rydberg atoms is that in they are often difficult to handle. One approach is to search for special wavelengths -- "magic wavelengths" -- at which atoms can be trapped and excited into Rydberg states without disturbing them. A new JQI experiment bears out high-precision calculations made predicting the existence of specific magic wavelengths.

RYDBERG ATOMS

Named for Swedish physicist Johannes Rydberg, these ballooned-up atoms are made by exciting the outermost electron in certain elements. Alkali atoms are handy for this purpose since they are hydrogen-like. That is, all the inner electrons can lumped together and regarded, along with the atom's nucleus, as a unified core, with the lone remaining electron lying outside; it's as if the atom were a heavy version of hydrogen.

The main energy levels of atoms are rated according to their principle quantum number, denoted by the letter n. For rubidium atoms, the species used in this experiment, the outermost electron starts in an n=5 state. Then laser light was used here to promote the electron into an n=18 state. Unlike atoms in their ground state, atoms in the n=18 excited state see each other out to distances as large as 700 nm. Rydberg atoms with higher values of n can interact at even larger separations, up to many microns. For comparison, the size of an un-excited rubidium atom is less than 1 nm.

Actually the energy required to promote the atom to the 18s state directly would require a laser producing ultraviolet light, and the researchers decided it was more practical to boost the outer electron to its higher perch in two steps, using two more convenient lasers whose energy added to the total energy difference.

DIPOLE TRAP AND STARK EFFECT

Rb atoms are in the trap in the first place because they have been gathered into a cloud, cooled to temperatures only a few millionths of a degree above absolute zero, and then maintained in position by a special trapping laser beam system.

The trapping process exploits the Stark effect, a phenomenon in which the strong electric field of the confining laser beam alters the energy levels of the atom. By using a sort of hourglass-shaped beam, the light forms a potential-energy well in which atoms will be trapped. The atoms will congregate in a tidy bundle in the middle of this optical dipole trap. The trouble is that the Stark effect, and along with it the trapping influence of the laser beams, depends on the value of n. In other words, a laser beam good for trapping atoms at one n might not work for other values of n.

Fortunately, at just the right wavelengths, the "magic wavelengths," the trapping process will confine atoms in both the low-lying n=5 state and in the excited n=18 state. The theoretical calculations predicting where these wavelengths would be (with a particularly useful one around a value of 1064 nm) and the experimental findings bearing out the predictions were published recently in the journal Physical Review A.

The first author on the paper is Elizabeth Goldschmidt. "We made a compromise, using atoms in a relatively low-n Rydberg state, the 18s state. We work in this regime because we are interested in interaction lengths commensurate with our optical lattice and because the particular magic wavelength is at a convenient wavelength for our lasers, namely 1064 nm." She said that in a next round of experiments, in the lab run by Trey Porto and Steve Rolston, will aim for a higher Rydberg level of n greater than 50.

JQI fellow Marianna Safronova helped to produce the magic wavelength predictions. "To make a prediction," said Safronova, "you need to know the polarizability -- the amount by which the Stark effect will shift the energy level -- for the highly-excited n=18 level. The job for finding magic wavelengths beyond n=18 with our high-precision first-principles approach would be pretty hard. Agreement of theoretical prediction with experimental measurement gives a great benchmark for high-precision theory."

"The most important feature of our paper," said Porto, "is that the theorists have pushed the theoretical limits of calculations of magic wavelengths for highly excited Rydberg atoms, and then verified these calculations experimentally."

###

Reference publication: "Magic wavelengths for the 5s-18s transition in rubidium," E. A. Goldschmidt, D. G. Norris, S. B. Koller, R. Wyllie, R. C. Brown, and J. V. Porto, U. I. Safronova, M. S. Safronova, Physical Review A 91 032518 (2015); http://journals.aps.org/pra/pdf/10.1103/PhysRevA.91.032518

Research Contact: Elizabeth Goldschmidt, goldschm@umd.edu

Media Contact: Phillip F. Schewe, pschewe@umd.edu, (301) 405-0989

(*) The Joint Quantum Institute (JQI) is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

Media Contact

Phillip Schewe
pschewe@umd.edu
301-405-0989

http://jqi.umd.edu 

Phillip Schewe | EurekAlert!

Further reports about: QUANTUM Rydberg energy levels experimental highly laser beam lasers levels wavelength wavelengths

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>