Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar Rock-Like Material May Someday House Moon Colonies

06.01.2009
Dwellings in colonies on the moon one day may be built with new, highly durable bricks developed by students from the College of Engineering at Virginia Tech.

Initially designed to construct a dome, the building material is composed of a lunar rock-like material mixed with powdered aluminum that can be molded into any shape.

The invention recently won the In-Situ Lunar Resource Utilization materials and construction category award from the Pacific International Space Center for Exploration Systems (PISCES). The award was one of two prizes given out this year by the research center, which is dedicated to supporting life on the moon and beyond.

Design work on the early-development lunar bricks was based on previous work by the College of Engineering student team’s adviser Kathryn Logan, a professor of materials science and engineering and the Virginia Tech Langley Professor at the National Institute of Aerospace in Hampton, Va. The seven-member student team works with Logan at the NIA.

Logan’s prior research entailed mixing powdered aluminum and ceramic materials to form armor plating for tanks funded through a Department of Defense contract. “I theorized that if I could do this kind of reaction to make armor, then I could use a similar type of reaction to make construction materials for the moon,” Logan said.

Since actual lunar rock, known as regolith, is scarce, the students used volcanic ash from a deposit on Earth along with various minerals and basaltic glass, similar to rock on the lunar surface, according to Eric Faierson, a doctoral student who led the Virginia Tech team.

During initial experiments, the simulated regolith and aluminum powder were mixed and placed inside a shallow aluminum foil crucible. A wire was inserted into the mixture, which was then heated to 2,700 degrees Fahrenheit triggering a reaction called self-propagating high-temperature synthesis (SHS), Logan said. The reaction caused the material to form a solid brick. A ceramic crucible was used in later experiments to form complex curved surfaces.

Once the student team had created a brick, they found that it was almost as strong as concrete under various pressure tests. Faierson said one-square inch of the brick could withstand the gradual application of 2,450 pounds, nearly the weight of a Ford Focus. This strength would enable it to withstand an environment where gravity is a fraction of the pull on Earth. The more than yearlong ongoing research has included studying the bricks reaction to solar radiation and their effectiveness as a construction material for lunar applications.

The research team chose small bricks -- about one-third the size of a regular mason’s brick, or roughly 5 inches x 2.5 inches x 1 inch, and weighing about an eighth of a pound -- for quality control and to conserve materials. “Theoretically the material can be made in any size and shape, however performing the reaction on a larger scale increases the potential for” flaws in the end product, Faierson said. “Large scale implementation might be more appropriate in applications such as landing pads, roadways, and blast berms, where flaws are less of a concern.”

The group formed several brick shapes to demonstrate the concept of forming an igloo-like dome component, but did not build the full structure. Creation of larger bricks, about cinder block size, including those closer to perfectly formed shape, are forthcoming, Logan said. Also to be studied is the harnessing of large quantities of heat derived from the SHS reaction to produce electricity, and extract volatiles for the lunar colony.

One of the team members, Michael Hunt, a graduate student, studied the chemical composition of the aluminum powder and the regolith before the fusion process, and then the resulting brick compound. “It’s definitely exciting to have worked on the lunar brick project,” he said. “I never would have thought that I’d be a part of something like this,” Hunt said.

Judging by members of the Japan-United States Science, Technology & Space Applications Program, which included scientists from NASA and industry, was based on the novelty and thoughtfulness evidenced by the teams, their commitment to PISCES goals and objectives, and their compliance with the rules of the competition. PISCES is located in Hawaii, where volcanic geology gives scientists a landscape similar to the moon that can be used to test technology prior to possible lunar use.

Winning College of Engineering student team members included Faierson, a doctoral student in the materials science and engineering (MSE) department; Hunt, a MSE master’s degree candidate from Virginia Beach, Va.; Susan Holt, a doctoral student in MSE from Christiansburg, Va.; Scott Hopkins, an undergraduate mechanical engineering student from Yorktown, Va.; Sharon Jefferies, a masters student in the aerospace and ocean engineering department from Newport News, Va.; Michael Okyen, an undergraduate mechanical engineering student from Yorktown, Va.; and Brian Stewart, an MSE doctoral student from Hayes, Va.

A student team from Massachusetts Institute of Technology won the second award, in the category of systems engineering.

The Virginia Tech team at Hampton is part of the National Institute of Aerospace, a nonprofit research and graduate education institute. Formed in 2002 to support NASA’s mission of space exploration, the Institute’s graduate program offers masters and doctorate degrees in the fields of engineering and science through Georgia Tech, Hampton University, North Carolina A&T State University, North Carolina State University, the University of Maryland, the University of Virginia and Virginia Tech.

The College of Engineering (www.eng.vt.edu) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college’s 5,700 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 1,800 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation and the world.

Steven Mackay | Newswise Science News
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>