Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lovely 'snowfakes' mimic nature, advance science

26.02.2009
Exquisitely detailed and beautifully symmetrical, the snowflakes that David Griffeath makes are icy jewels of art.

But don't be fooled; there is some serious science behind the University of Wisconsin-Madison mathematician's charming creations. Although they look as if they tumbled straight from the clouds, these "snowfakes" are actually the product of an elaborate computer model designed to replicate the wildly complex growth of snow crystals.

Four years in the making, the model that Griffeath built with University of California, Davis, mathematician Janko Gravner can generate all of nature's snowflake types in rich three-dimensional detail. In the January issue of Physical Review E, the pair published the model's underlying theory and computations, which are so intensive they are "right on the edge of feasibility," says Griffeath.

"Even though we've artfully stripped down the model over several years so that it's as simple and efficient as possible, it still takes us a day to grow one of these things," he says.

In nature, each snowflake begins as a bit of dust, a bacterium or a pollutant in the sky, around which water molecules start glomming together and freezing to form a tiny crystal of ice. Roughly a quintillion (one million million million) molecules make up every flake, with the shape dictated by temperature, humidity and other local conditions.

How such a seemingly random process produces crystals that are at once geometrically simple and incredibly intricate has captivated scientists since the 1600s, but no one has accurately simulated their growth until now. Griffeath and Gravner's model not only gets the basic shapes right, including fern-like stars, long needles and chunky prisms, but also fine elements such as tiny ridges that run along the arms and weird, circular surface markings.

Griffeath considers himself part of a long tradition of scientists, starting with famed mathematician and astronomer Johannes Kepler, who have marveled at snowflakes and simply wanted to understand them. But on the practical side, the model could help researchers better predict how various snowflake types in the clouds affect the amount of water reaching earth. Griffeath is now exploring that possibility with a UW-Madison meteorologist.

In the meantime, the project has given him a newfound appreciation for water, whose one-of-a-kind properties are what make snowflakes possible.

"Water is the most amazing molecule in the universe, pure and simple," he says. "It's just three little atoms, but its physics and chemistry are unbelievable."

David Griffeath | EurekAlert!
Further information:
http://www.wisc.edu
http://www.news.wisc.edu/newsphotos/snowflakes/

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>