Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Louisiana Tech faculty, students making an 'impact' on atomic supercollider

04.12.2009
Tech team is part of ATLAS collaboration for Large Hadron Collider in Switzerland

Faculty and students from Louisiana Tech University are playing an important role in what has been described as "the most complex and comprehensive science project ever assembled on the planet."

The Large Hadron Collider (LHC) project in Geneva, Switzerland is an underground "atom smasher" that seeks to re-enact the beginning of the universe, back to one-billionth of a second after the theorized Big Bang, by accelerating and colliding protons at near the speed of light.

The European Organization for Nuclear Research (CERN) has reported that, after nearly a year of repairs, circulating beams were recently reintroduced into the LHC with the first successful proton collision occurring on November 23.

According to Dick Greenwood, associate professor of physics at Louisiana Tech, the ultimate objectives of the LHC experiments are to test the predictions of the Standard Model of particle physics and to look for new physics beyond the Standard Model.

"These experiments will also provide the general public a deeper understanding of how nature works and will inevitably lead to future technological spinoffs. The development of the Internet, for example, was a spinoff from previous experiments like those at the LHC."

The team from Louisiana Tech is part of the ATLAS collaboration; one of four large multipurpose particle detector systems. ATLAS (which stands for A Toroidal LHC ApparatuS) investigates a wide range of physics, including the search for other dimensions, and particles that could make up 'dark matter.'

"All of the members of the Louisiana Tech ATLAS group are thrilled about the collision event, and of Louisiana Tech's continuing involvement in this scientific enterprise," said Lee Sawyer, associate professor and program chair for the physics department at Louisiana Tech.

Tech's team has directly contributed to the development of data quality software for measuring the energies of the particles produced in the collisions, the design and commissioning of current monitors for the ATLAS inner tracker, Monte Carlo simulations of the physics signals expected in the data, and designs for future upgrades.

"Louisiana Tech's contributions to the LHC research, and the competitive federal funding that supports it, verifies that our science faculty and students are among the best in the world," said Stan Napper, dean of Louisiana Tech's College of Engineering and Science.

"The key to making a difference in our state and for our students is maintaining education and research programs with nationally and internationally recognized quality."

More than 1700 scientists, engineers, students, and technicians from 97 US universities and national laboratories have helped design and build the LHC accelerator and its four massive particle detectors.

Discover, one of the world's premier science and technology magazines, placed the LHC project at No. 2 on its list of the Top 100 Stories of 2008.

Besides helping to either prove or disprove the Big Bang Theory, the LHC experiments could also help scientists address issues such as variations in particle mass, and the dynamics of matter and antimatter.

"Our faculty are contributing in significant ways to this major project of global importance," said Les Guice, Louisiana Tech's vice president for research and development. "The results of their research will impact science and engineering advancements for decades to come."

The success of the LHC's first proton collision is a benchmark for the project and one that the Louisiana Tech team hopes will result in future opportunities and collaborations.

Sawyer adds, "Now the hard work of understanding the detectors and the data being recorded will begin, followed soon I hope by important analyzes and discoveries."

Dave Guerin | EurekAlert!
Further information:
http://www.latech.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>