Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lotus leaf inspires fog-free finish for transparent surfaces

30.07.2012
Inspired by the water-repellent properties of the lotus leaf, a group of scientists in China has discovered a way to impart a fog-free, self-cleaning finish to glass and other transparent materials.

"Superhydrophobic" surfaces, such as the lotus leaf, are excellent at repelling water and also boast other "smart" self-cleaning, anti-glare, anti-icing, and anti-corrosion properties. By using hollow silica nanoparticles that resemble raspberries, scientists at the Chinese Academy of Sciences were able to apply a clear, slick, water-repellent surface to glass.

This is significant in material fields because it means that after modifying low-surface-energy materials and creating surface textures on them, surfaces can be made to exhibit completely different wetting characteristics – either repelling or attracting moisture. As described by the scientists in the American Institute of Physics (AIP) journal Applied Physics Letters, these surfaces show good anti-fogging and light transmittance properties before and after chemical modification, which should help pave the way to a clearer, fog-free performance for windshields, windows, solar cells and panels, LEDs, and even TVs, tablets, and cell phone screens.

Smart surface coatings are highly desirable, especially for solar cells and panels, which frequently lose up to 40 percent of their efficiency to dust and dirt buildup within a year of installation. The next challenge the scientists face is figuring out how to move the smart surfaces from the lab to industry in a cost-efficient manner.

Articles featured in AIP press releases will be freely accessible online for a minimum of 30 days following publication.

Article: "Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging," is published in Applied Physics Letters.

Link: http://apl.aip.org/resource/1/applab/v101/i3/p033701_s1

Authors: Yu Chen (1), Yabin Zhang (2), Lei Shi (1), Jing Li (1), Yan Xin (2), Tingting Yang (2), and Zhiguang Guo (1, 2).

(1) Lanzhou Institute of Chemical Physics (2) Hubei University

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Lifting the veil on the black hole at the heart of our Galaxy
21.01.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>