Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017

Gravitational-wave observation confirms heavy-elements theory

Astrophysicist Chris Fryer was enjoying an evening with friends on August 25, 2017, when he got the news of a gravitational-wave detection by LIGO, the Laser Interferometer Gravitational-wave Observatory. The event appeared to be a merger of two neutron stars -- a specialty for the Los Alamos National Laboratory team of astrophysicists that Fryer leads. As the distant cosmic cataclysm unfolded, fresh observational data was pouring in from the observation -- only the fifth published since the observatory began operating almost two years ago.


The merger of two equal mass neutron stars is simulated using the 3-D code SNSPH. As the two stars merge, their outer edge ejects a spiral of neutron-rich material. The radioactivity in this ejected material is the primary power source for the optical and infrared light observed in the kilonova. A single hyper-massive neutron star remains at the center in a wide field of ejecta material. This hyper-massive neutron star will quickly collapse to a black hole.

Credit: LANL ISTI/ASC Co-Design Summer School

"As soon as I heard the news, I knew that understanding all of the implications would require input from a broad, multi-disciplinary set of scientists," said Fryer, who leads Los Alamos' Center for Theoretical Astrophysics. Fryer's colleagues, Ryan Wollaeger and Oleg Korobkin, outlined a series of radiation transport calculations and were given priority on Los Alamos' supercomputers to run them. "Within a few hours, we were up and running."

They soon discovered the LIGO data showed more ejected mass from the merger than the simulations accounted for. Other researchers at Los Alamos began processing data from a variety of telescopes capturing optical, ultraviolet, x-ray, and gamma-ray signals at observatories around the world (and in space) that had all been quickly directed to the general location of the LIGO discovery.

The theorists tweaked their models and, to their delight, the new LIGO data confirmed that heavy elements beyond iron were formed by the r-process (rapid process) in the neutron-star merger. The gravitational wave observation was having a major impact on theory.

They also quickly noticed that, within seconds of the time of the gravitational waves, the Fermi spacecraft reported a burst of gamma rays from the same part of the sky. This is the first time that a gravitational wave source has been detected in any other way. It confirms Einstein's prediction that gravitational waves travel at the same speed as gamma rays: the speed of light.

When neutron stars collide

The gravitational wave emission and related electromagnetic outburst came from the merger of two neutron stars in a galaxy called NGC 4993, about 130 million light-years away in the constellation Hydra. The neutron stars are the crushed remains of massive stars that once blew up in tremendous explosions known as supernovas.

With masses 10 and 20 percent greater than the sun's and a footprint the size of Washington, D.C., the neutron stars whirled around each other toward their demise, spinning hundreds of times per second. As they drew closer like a spinning ice skater pulling in her arms, their mutual gravitational attraction smashed the stars apart in a high-energy flash called a short gamma-ray burst and emitted the tell-tale gravitational wave signal. Although short gamma-ray bursts have long been theorized to be produced through neutron star mergers, this event -- with both gamma-ray and gravity wave observations -- provides the first definitive evidence.

With Los Alamos's cross-disciplinary, multi-science expertise, the Los Alamos team was geared up and ready for just such an event. Laboratory researcher Oleg Korobkin is the lead theory author on a paper released yesterday in Science, while the Lab's Ryan Wollaeger is the second theory author on a paper released yesterday in Nature.

Beyond that theory work, though, Los Alamos scientists were engaged in a broad range of observations, astronomy, and data analysis tasks in support of the LIGO neutron-star discovery. Because the Laboratory's primary mission centers on the nation's nuclear stockpile, Los Alamos maintains deep expertise in nuclear physics and its cousin astrophysics, the physics of radiation transport, data analysis, and the computer codes that run massive nuclear simulations on world-leading supercomputers. In other words, the Laboratory is a logical partner for extending LIGO discoveries into theories and models and for confirming the conclusions about what the observatory discovers.

###

Among the key papers including Los Alamos' work with the LIGO observation are the following:

"Multi-messenger Observations of a Binary Neutron Star Merger," Abbott et al., Astrophysical Journal Letters. Reports the search and discovery of multi-wavelength emission, including a coincident short gamma-ray burst, from the event detected in gravitational waves. Los Alamos researchers were involved in several of the observational/instrumentation teams that enabled these discoveries.

"The X-ray counterpart to the gravitational wave event GW170817," Troja et al., Nature. Detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short gamma-ray bursts and gravitational waves from neutron mergers and independently confirms the collimated nature of the GRB emission. Ryan Wollaeger of Los Alamos is second theory author, in charge of kilonova.

"Swift and NuSTAR observations of GW170817: detection of a blue kilonova," Evans et al., Science. Reports X-ray and UV observations of the first binary neutron star merger detected through gravitational waves. Los Alamos researchers providing theory work: Oleg Korobkin, Ryan Wollaeger, Wes Even, Chris Fontes, Chris Fryer, Aimee Hungerford, and David Palmer.

"The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars," Tanvir et al., Astrophysical Journal Letters. Reports on the discovery and monitoring of the near-infrared counterpart of a binary neutron-star merger event detected as a gravitational wave source by Advanced LIGO/Virgo (GW170817) and as a short gamma-ray burst by Fermi GBM and SPI-ACS (GRB\,170817A). The evolution of the transient light is consistent with predictions for the behavior of a "kilonova/macronova" powered by the radioactive decay of massive neutron-rich nuclides created through r-process nucleosynthesis in the neutron-star ejecta. Los Alamos' Oleg Korobkin is the lead theory author on the paper. He and Ryan Wollaeger, also from Los Alamos, did the kilonova models to match to the data. Wes Even, Chris Fontes, and Chris Fryer of Los Alamos were also authors.

This research used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy National Nuclear Security Administration under Contract No. DE-AC52-06NA25396.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWX Technologies, Inc. and URS Corporation for the Department of Energy's National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns.

Media Contact

Nancy Ambrosiano
nwa@lanl.gov
505-667-0471

@LosAlamosNatLab

http://www.lanl.gov

Nancy Ambrosiano | EurekAlert!

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Mutation that causes autism and intellectual disability makes brain less flexible

20.11.2018 | Life Sciences

The sweet side of reproductive biology

20.11.2018 | Life Sciences

Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit

20.11.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>