Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Long-lived storage of a photonic qubit for worldwide teleportation


MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics (MPQ) have now achieved a major breakthrough: they demonstrated the long-lived storage of a photonic qubit on a single atom trapped in an optical resonator.

Artist’s view of global teleportation of quantum bits.

Graphic: Christoph Hohmann, Nanosystems Initiative Munich (NIM)

The coherence time of the stored quantum bit outlasts 100 milliseconds and therefore matches the requirement for the creation of a global quantum network in which qubits are directly teleported between end nodes. “The coherence times that we achieve represent an improvement by two orders of magnitude compared to the current state-of-the-art”, says Professor Rempe. (Nature Photonics, 11 December 2017)

Light is an ideal carrier for quantum information encoded on single photons, but transfer over long distances is inefficient and unreliable due to losses. Direct teleportation between the end nodes of a network can be utilized to prevent the loss of precious quantum bits.

First, remote entanglement has to be created between the nodes; then, a suitable measurement on the sender side triggers the “spooky action at a distance”, i.e. the instantaneous transport of the qubit to the receiver’s node.

However, the quantum bit may be rotated when it reaches the receiver and hence has to be reverted. To this end, the necessary information has to be classically communicated from sender to receiver. This takes a certain amount of time, during which the qubit has to be preserved at the receiver. Considering two network nodes at the most distant places on earth, this corresponds to a time span of 66 milliseconds.

In 2011, Professor Rempe’s group has demonstrated a successful technique for storing a photonic quantum bit on a single atom. The atom is placed in the centre of an optical cavity which is formed by two high-finesse mirrors and hold in place by standing light waves.

A single photon which carries the quantum bit in a coherent superposition of two polarization states starts to strongly interact with the single atom once it is sent into the resonator. Ultimately, the photon is absorbed by the atom and the quantum bit is transferred into a coherent superposition of two atomic states. The challenge is to maintain the atomic superposition as long as possible. In former experiments, the storage time was limited to a few hundreds of microseconds.

“The major problem for storing quantum bits is the phenomenon of dephasing,” explains Stefan Langenfeld, a doctoral candidate at the experiment. “Characteristic of a quantum bit is the relative phase of the wave functions of the atomic states that are coherently superimposed. Unfortunately, in real-world experiments, this phase relation is lost over time mostly due to interaction with fluctuating ambient magnetic fields.”

In their current experiment, the scientists take new measures to counteract the impact of those fluctuations. Once the information is transferred from the photon to the atom, the population of one atomic state is coherently transferred to another state. This is done by using a pair of laser beams to induce a Raman transition. In this new configuration, the stored qubit is 500 times less sensitive to magnetic field fluctuations.

Before the retrieval of the stored photonic quantum bit, the Raman transition is reversed. For a storage time of 10 milliseconds, the overlap of the stored photon with the retrieved photon is about 90%. This means, that the mere transfer of the atomic qubit to a less sensitive state configuration extends the coherence time by a factor of 10. Another factor of 10 was gained by adding a so-called “spin echo” to the experimental sequence. Here, the population of the two atomic states used for storage is swapped in the middle of the storage time.

“The new technique allows us to preserve the quantum nature of the stored bit for more than 100 milliseconds”, says Matthias Körber, a doctoral candidate at the experiment. “Although an envisioned global quantum network which allows for secure and reliable transport of quantum information still demands a lot of research, the long-lived storage of quantum bits is one of the key technologies and we believe that the current improvements will bring us a significant step closer to its realization.” Olivia Meyer-Streng

Original publication:

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, G. Rempe
Decoherence-protected memory for a single-photon qubit
Nature Photonics, Advance Online Publication, 11 December 2017, DOI: 10.1038/s41566-017-0050-y


Prof. Dr. Gerhard Rempe
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 701

Matthias Körber
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 729

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 213

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

Latest News

Important Progress in the Fight against Testicular Cancer

25.03.2019 | Life Sciences

Measurement of thoughts during knowledge acquisition

25.03.2019 | Life Sciences

Eliminating hepatitis C viruses effectively

25.03.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>