Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019

At the Niels Bohr Institute, University of Copenhagen, researchers have realized the swap of electron spins between distant quantum dots. The discovery brings us a step closer to future applications of quantum information, as the tiny dots have to leave enough room on the microchip for delicate control electrodes.

The distance between the dots has now become big enough for integration with traditional microelectronics and perhaps, a future quantum computer. The result is achieved via a multinational collaboration with Purdue University and the University of Sydney, Australia, now published in Nature Communications.


Researchers at the Niels Bohr Institute cooled a chip containing a large array of spin qubits below -273 Celsius. To manipulate individual electrons within the quantum-dot array, they applied fast voltage pulses to metallic gate electrodes located on the surface of the gallium-arsenide crystal (see scanning electron micrograph). Because each electron also carries a quantum spin, this allows quantum information processing based on the array's spin states (the arrows on the graphic illustration). During the mediated spin exchange, which only took a billionth of a second, two correlated electron pairs were coherently superposed and entangled over five quantum dots, constituting a new world record within the community.

Credit: Ferdinand Kuemmeth

Size matters in quantum information exchange even on the nanometer scale

Quantum information can be stored and exchanged using electron spin states. The electrons' charge can be manipulated by gate-voltage pulses, which also controls their spin. It was believed that this method can only be practical if quantum dots touch each other; if squeezed too close together the spins will react too violently, if placed too far apart the spins will interact far too slowly.

This creates a dilemma, because if a quantum computer is ever going to see the light of day, we need both, fast spin exchange and enough room around quantum dots to accommodate the pulsed gate electrodes.

Normally, the left and right dots in the linear array of quantum dots (Illustration 1) are too far apart to exchange quantum information with each other. Frederico Martins, postdoc at UNSW, Sydney, Australia, explains: "We encode quantum information in the electrons' spin states, which have the desirable property that they don't interact much with the noisy environment, making them useful as robust and long-lived quantum memories. But when you want to actively process quantum information, the lack of interaction is counterproductive - because now you want the spins to interact!"

What to do? You can't have both long lived information and information exchange - or so it seems. "We discovered that by placing a large, elongated quantum dot between the left dots and right dots, it can mediate a coherent swap of spin states, within a billionth of a second, without ever moving electrons out of their dots.

In other words, we now have both fast interaction and the necessary space for the pulsed gate electrodes ", says Ferdinand Kuemmeth, associate professor at the Niels Bohr Institute.

Collaborations are an absolute necessity, both internally and externally

The collaboration between researchers with diverse expertise was key to success. Internal collaborations constantly advance the reliability of nanofabrication processes and the sophistication of low-temperature techniques.

In fact, at the Center for Quantum Devices, major contenders for the implementation of solid-state quantum computers are currently intensely studied, namely semiconducting spin qubits, superconducting gatemon qubits, and topological Majorana qubits.

All of them are voltage-controlled qubits, allowing researchers to share tricks and solve technical challenges together. But Kuemmeth is quick to add that "all of this would be futile if we didn't have access to extremely clean semiconducting crystals in the first place".

Michael Manfra, Professor of Materials Engineering, agrees: "Purdue has put a lot of work into understanding the mechanisms that lead to quiet and stable quantum dots. It is fantastic to see this work yield benefits for Copenhagen's novel qubits".

The theoretical framework of the discovery is provided by the University of Sydney, Australia. Stephen Bartlett, a professor of quantum physics at the University of Sydney, said: "What I find exciting about this result as a theorist, is that it frees us from the constraining geometry of a qubit only relying on its nearest neighbours". His team performed detailed calculations, providing the quantum mechanical explanation for the counterintuitive discovery.

Overall, the demonstration of fast spin exchange constitutes not only a remarkable scientific and technical achievement, but may have profound implications for the architecture of solid-state quantum computers. The reason is the distance:

"If spins between non-neighboring qubits can be controllably exchanged, this will allow the realization of networks in which the increased qubit-qubit connectivity translates into a significantly increased computational quantum volume", predicts Kuemmeth.

Media Contact

Soeren Granat
granat@nbi.ku.dk
45-35-32-06-05

 @uni_copenhagen

http://www.ku.dk 

Soeren Granat | EurekAlert!
Further information:
https://www.nbi.ku.dk/english/news/news19/long-distance-quantum-information-exchange.-success-at-the-nanoscale/
http://dx.doi.org/10.1038/s41467-019-09194-x

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>