Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lonely Atoms, Happily Reunited

26.07.2016

The remarkable behaviour of platinum atoms on magnetite surfaces could lead to better catalysts. Scientists at TU Wien (Vienna) can now explain how platinum atoms can form pairs with the help of carbon monoxide.

At first glance, magnetite appears to be a rather inconspicuous grey mineral. But on an atomic scale, it has remarkable properties: on magnetite, single metal atoms are held in place, or they can be made to move across the surface.


Two platinum atoms on the magnetite surface can bond, if they are attached to CO molecules.

TU Wien


Experiments in the vacuum chamber at TU Wien.

TU Wien

Sometimes several metal atoms on magnetite form small clusters. Such phenomena can dramatically change the chemical activity of the material. Atomic processes on the magnetite surface determine how well certain metal atoms can serve as catalysts for chemical reactions.

Scientists at TU Wien (Vienna), together with colleagues from Utrecht University, can now watch single platinum atoms form tiny clusters. Carbon monoxide plays a dual role in this process: It allows single platinum atoms to move and form pairs, and then it holds these pairs together for a long time. Only by increasing the temperature can the pair-bonds between platinum atoms can be broken.

Lonely Atoms

It sounds a bit like an unhappy love story: “Two platinum atoms would actually like to be together, but the magnetite surface keeps them apart”, says Roland Bliem (TU Wien). Together with Professor Gareth Parkinson, Professor Ulrike Diebold and their colleagues, he analysed the behaviour of platinum atoms using a scanning tunnelling microscope.

“When a platinum atom hits the magnetite surface, it is kept in place by the oxygen atoms in the magnetite. The atoms always end up alone. On other surfaces, pair formation would be favoured, but magnetite does not allow that”, says Roland Bliem. The platinum atoms sit on specific places on the magnetite crystal and cannot get away without outside help.

However, with the appearance of carbon monoxide, the situation changes completely: “A carbon monoxide molecule can attach to a platinum atom and lift it up”, says Gareth Parkinson. “We call that the skyhook effect.” The lifting process frees the atom from the tight grip of the magnetite, and together, the molecule and the platinum atom can start moving around randomly across the magnetite surface.

When one mobilized platinum atom finds another, they can form a bond – as long as both of them are being lifted up by carbon monoxide, diminishing the influence of the magnetite below.

When the temperature is increased to 250°C, the carbon monoxide separates from the platinum atom and the bond breaks up. The two platinum atoms must once again find separate places on the magnetite surface. This effect opens up a strategy to turn clusters into single atoms – an important process in so called “single-atom catalysts”. Sometimes clusters of several atoms are formed. These larger clusters, however, cannot be broken up, even at high temperatures.

Movies with Atomic Resolution

“In our scanning tunnelling microscope, we can image the same part of the surface again and again, so that we can create a movie, showing the dancing atoms”, says Roland Bliem. “This is crucial for understanding what really happens on the magnetite surface. We can watch single atoms as they wander across the magnetite surface or bond with each other.

If we only had a picture of the end result, we could not say with certainty, whether one specific structure consists of one, two or more atoms. Only by following the time evolution of the atomic motion, we know which interpretation is correct.” Bliem did not only conduct the experiments, he also performed complex theoretical calculations to explain the peculiar behaviour of the platinum atoms on a quantum mechanical level.

For chemical catalysis, such findings play an important role. “Metals such as platinum are frequently used as catalysts”, says Gareth Parkinson. “But a large cluster of many metal atoms may have completely different chemical properties than single metal atoms sitting separately on a surface. When we want to optimize catalysts, so we must be able to understand and control the behaviour of the atoms. This work is one step further towards that goal.”

Photo download: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/magnetit

Roland Bliema, Jessi E. S. van der Hoevenb, Jan Hulvaa, Jiri Paveleca, Oscar Gambaa, Petra E. de Jonghb, Michael Schmida, Peter Blahac, Ulrike Diebolda, and Gareth S. Parkinson (2016). "Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface". PNAS: http://www.pnas.org/content/early/2016/07/22/1605649113.abstract

Further information:

Dipl.-Ing. Roland Bliem
Institute of Applied Physics
TU Wien (Vienna)
Wiedner Hauptstraße 8-10, 1040 Vienna
T: +43-1-58801-13466
roland.bliem@tuwien.ac.at

Gareth Parkinson, PhD
Institute of Applied Physics
TU Wien (Vienna)
Wiedner Hauptstraße 8-10, 1040 Vienna
T: +43-1-58801-13473
gareth.parkinson@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/magnetit
http://www.pnas.org/content/early/2016/07/22/1605649113.abstract

Dr. Florian Aigner | Technische Universität Wien

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>