Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Liquid crystals in nanopores produce a surprisingly large negative pressure


Negative pressure governs not only the Universe or the quantum vacuum. This phenomenon, although of a different nature, appears also in liquid crystals confined in nanopores. At the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow, a method has been presented that for the first time makes it possible to estimate the amount of negative pressure in spatially limited liquid crystal systems.

At first glance, negative pressure appears to be an exotic phenomenon. In fact, it is common in nature, and what's more, occurs on many scales. On the scale of the Universe, the cosmological constant is responsible for accelerating the expansion of spacetime.

The negative pressure produced in nanopores by liquid crystals can significantly exceed 100 atmospheres. Above: The glass of the nematic phase of liquid crystal studied by scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow (Source: IFJ PAN).

Source: IFJ PAN

In the world of plants, attracting intermolecular forces (not: expanding thermal motions) guarantee the flow of water to the treetops of all trees taller than ten metres. On the quantum scale, the pressure of virtual particles of a false vacuum leads to the creation of an attractive force, appearing, for example, between two parallel metal plates (the famous Casimir effect).

"The fact that a negative pressure appears in liquid crystals confined in nanopores was already known. However, it was not known how to measure this pressure. Although we also cannot do this directly, we have proposed a method that allows this pressure to be reliably estimated," says Dr. Tomasz Rozwadowski from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow, the first author of a publication in the Journal of Molecular Liquids.

The Polish physicists investigated a liquid crystal known as 4CFPB, made up of 1.67 nm long molecules with a molecular diameter of 0.46 nm. Experiments without nanopores, under normal and elevated pressure conditions (up to around 3000 atmospheres), were carried out at the University of Silesia in Katowice.

In turn, systems in silicon membranes with non-intersecting nanopores with a diameter of 6 and 8 nanometres were examined at the University of Leipzig (Germany). The geometry of the nanopores meant that there was room for only a few molecules of liquid crystal next to each other, with the long axes positioned along the walls of the channel.

The experiments looked at changes in various parameters of the liquid crystal (including dielectric dispersion and absorption). The measurements made it possible to conclude that an increase in pressure was accompanied by a slowing down of molecular mobility. However, the narrower the channels in which the molecules of liquid crystal in the nanopores were, the faster they moved.

The data also showed that the density of the liquid crystal molecules increased with increasing pressure whilst in the nanopores it decreased. There was also a change in the temperatures at which the liquid crystal passed from the liquid isotropic phase (with molecules arranged chaotically in space) to the simplest liquid crystalline phase (nematic; the molecules are still chaotically arranged, but they position their long axes in the same direction), and then to the glassy solid phase. As the pressure increased, the temperatures of the phase transitions increased. In the nanopores - they decreased.

"With increasing pressure, all the parameters of the liquid crystal we examined changed conversely to how they changed in nanopores with decreasing diameters. This suggests that the conditions in the nanopores correspond to a reduced pressure. Since the liquid crystal molecules in the channels try to stretch their walls, as if they were expanding, we can talk about negative pressure, relative to atmospheric pressure which constricts the walls," says Dr. Rozwadowski.

The observed changes in physical parameters made it possible for the first time to estimate the value of the negative pressure appearing in the liquid crystal filling the nanopores. It turned out that (assuming the changes are linear) the negative pressure in nanopores can reach almost -200 atmospheres. This is an order of magnitude greater than the negative pressure responsible for water transport in trees.

"Our research is fundamental in nature, it provides information about the physics of phenomena occurring in liquid crystals constrained in nanopores of varying diameters. However, liquid crystals have many applications, for example in displays, optoelectronics, and medicine, so each new description of how these substances behave on the nanoscale in such specific spatial conditions may carry practical information," stressed Dr. Rozwadowski.


Research on liquid crystals under spatial limitations was funded by the SONATA grant from the National Science Centre.

The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN) is currently the largest research institute of the Polish Academy of Sciences. The broad range of studies and activities of IFJ PAN includes basic and applied research, ranging from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of methods of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly yield of the IFJ PAN encompasses more than 600 scientific papers in the Journal Citation Reports published by the Thomson Reuters. The part of the Institute is the Cyclotron Centre Bronowice (CCB) which is an infrastructure, unique in Central Europe, to serve as a clinical and research centre in the area of medical and nuclear physics. IFJ PAN is a member of the Marian Smoluchowski Kraków Research Consortium: "Matter-Energy-Future" which possesses the status of a Leading National Research Centre (KNOW) in physics for the years 2012-2017. The Institute is of A+ Category (leading level in Poland) in the field of sciences and engineering.


Dr. Tomasz Rozwadowski
The Institute of Nuclear Physics Polish Academy of Sciences
tel: +48 12 6628481


"Negative pressure effects on molecular dynamics and phase diagram of glass-forming nematic liquid crystal 4-cyano-3-fluorophenyl 4-butylbenzoate (4CFPB) confined in nanopores"
T. Rozwadowski, M. Massalska-Arodz, M. Jasiurkowska-Delaporte
Journal of Molecular Liquids 279 (2019) 127-132

The website of the Institute of Nuclear Physics Polish Academy of Sciences.
Press releases of the Institute of Nuclear Physics Polish Academy of Sciences.


The negative pressure produced in nanopores by liquid crystals can significantly exceed 100 atmospheres. Above: The glass of the nematic phase of liquid crystal studied by scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow (Source: IFJ PAN).

Media Contact

Dr. Tomasz Rozwadowski

Dr. Tomasz Rozwadowski | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Original kilogram replaced -- new International System of Units (SI) entered into force
22.05.2019 | Forschungsverbund Berlin

nachricht Stellar waltz with dramatic ending
22.05.2019 | University of Bonn

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>