Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019

Negative pressure governs not only the Universe or the quantum vacuum. This phenomenon, although of a different nature, appears also in liquid crystals confined in nanopores. At the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow, a method has been presented that for the first time makes it possible to estimate the amount of negative pressure in spatially limited liquid crystal systems.

At first glance, negative pressure appears to be an exotic phenomenon. In fact, it is common in nature, and what's more, occurs on many scales. On the scale of the Universe, the cosmological constant is responsible for accelerating the expansion of spacetime.


The negative pressure produced in nanopores by liquid crystals can significantly exceed 100 atmospheres. Above: The glass of the nematic phase of liquid crystal studied by scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow (Source: IFJ PAN).

Source: IFJ PAN

In the world of plants, attracting intermolecular forces (not: expanding thermal motions) guarantee the flow of water to the treetops of all trees taller than ten metres. On the quantum scale, the pressure of virtual particles of a false vacuum leads to the creation of an attractive force, appearing, for example, between two parallel metal plates (the famous Casimir effect).

"The fact that a negative pressure appears in liquid crystals confined in nanopores was already known. However, it was not known how to measure this pressure. Although we also cannot do this directly, we have proposed a method that allows this pressure to be reliably estimated," says Dr. Tomasz Rozwadowski from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow, the first author of a publication in the Journal of Molecular Liquids.

The Polish physicists investigated a liquid crystal known as 4CFPB, made up of 1.67 nm long molecules with a molecular diameter of 0.46 nm. Experiments without nanopores, under normal and elevated pressure conditions (up to around 3000 atmospheres), were carried out at the University of Silesia in Katowice.

In turn, systems in silicon membranes with non-intersecting nanopores with a diameter of 6 and 8 nanometres were examined at the University of Leipzig (Germany). The geometry of the nanopores meant that there was room for only a few molecules of liquid crystal next to each other, with the long axes positioned along the walls of the channel.

The experiments looked at changes in various parameters of the liquid crystal (including dielectric dispersion and absorption). The measurements made it possible to conclude that an increase in pressure was accompanied by a slowing down of molecular mobility. However, the narrower the channels in which the molecules of liquid crystal in the nanopores were, the faster they moved.

The data also showed that the density of the liquid crystal molecules increased with increasing pressure whilst in the nanopores it decreased. There was also a change in the temperatures at which the liquid crystal passed from the liquid isotropic phase (with molecules arranged chaotically in space) to the simplest liquid crystalline phase (nematic; the molecules are still chaotically arranged, but they position their long axes in the same direction), and then to the glassy solid phase. As the pressure increased, the temperatures of the phase transitions increased. In the nanopores - they decreased.

"With increasing pressure, all the parameters of the liquid crystal we examined changed conversely to how they changed in nanopores with decreasing diameters. This suggests that the conditions in the nanopores correspond to a reduced pressure. Since the liquid crystal molecules in the channels try to stretch their walls, as if they were expanding, we can talk about negative pressure, relative to atmospheric pressure which constricts the walls," says Dr. Rozwadowski.

The observed changes in physical parameters made it possible for the first time to estimate the value of the negative pressure appearing in the liquid crystal filling the nanopores. It turned out that (assuming the changes are linear) the negative pressure in nanopores can reach almost -200 atmospheres. This is an order of magnitude greater than the negative pressure responsible for water transport in trees.

"Our research is fundamental in nature, it provides information about the physics of phenomena occurring in liquid crystals constrained in nanopores of varying diameters. However, liquid crystals have many applications, for example in displays, optoelectronics, and medicine, so each new description of how these substances behave on the nanoscale in such specific spatial conditions may carry practical information," stressed Dr. Rozwadowski.

###

Research on liquid crystals under spatial limitations was funded by the SONATA grant from the National Science Centre.

The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN) is currently the largest research institute of the Polish Academy of Sciences. The broad range of studies and activities of IFJ PAN includes basic and applied research, ranging from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of methods of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly yield of the IFJ PAN encompasses more than 600 scientific papers in the Journal Citation Reports published by the Thomson Reuters. The part of the Institute is the Cyclotron Centre Bronowice (CCB) which is an infrastructure, unique in Central Europe, to serve as a clinical and research centre in the area of medical and nuclear physics. IFJ PAN is a member of the Marian Smoluchowski Kraków Research Consortium: "Matter-Energy-Future" which possesses the status of a Leading National Research Centre (KNOW) in physics for the years 2012-2017. The Institute is of A+ Category (leading level in Poland) in the field of sciences and engineering.

CONTACTS:

Dr. Tomasz Rozwadowski
The Institute of Nuclear Physics Polish Academy of Sciences
tel: +48 12 6628481
email: tomasz.rozwadowski@ifj.edu.pl

SCIENTIFIC PAPERS:

"Negative pressure effects on molecular dynamics and phase diagram of glass-forming nematic liquid crystal 4-cyano-3-fluorophenyl 4-butylbenzoate (4CFPB) confined in nanopores"
T. Rozwadowski, M. Massalska-Arodz, M. Jasiurkowska-Delaporte
Journal of Molecular Liquids 279 (2019) 127-132
DOI: https://doi.org/10.1016/j.molliq.2019.01.106

LINKS:

http://www.ifj.edu.pl/
The website of the Institute of Nuclear Physics Polish Academy of Sciences.

http://press.ifj.edu.pl/
Press releases of the Institute of Nuclear Physics Polish Academy of Sciences.

IMAGES:

IFJ190424b_fot01s.jpg
HR: http://press.ifj.edu.pl/news/2019/04/24/IFJ190424b_fot01.jpg
The negative pressure produced in nanopores by liquid crystals can significantly exceed 100 atmospheres. Above: The glass of the nematic phase of liquid crystal studied by scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow (Source: IFJ PAN).

Media Contact

Dr. Tomasz Rozwadowski
tomasz.rozwadowski@ifj.edu.pl
48-126-628-481

http://www.ifj.edu.pl/?lang=en 

Dr. Tomasz Rozwadowski | EurekAlert!
Further information:
https://press.ifj.edu.pl/en/news/2019/04/24/
http://dx.doi.org/10.1016/j.molliq.2019.01.106

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>