Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lining up surprising behaviors of superconductor with one of the world's strongest magnets

09.08.2018

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that have a "super" ability to conduct electricity when chilled by liquid nitrogen? A team of scientists set out to answer this question in one such superconductor made of the elements lanthanum, strontium, copper, and oxygen (LSCO). They discovered that the electrical resistance of this copper-oxide compound, or cuprate, changes in an unusual way when very high magnetic fields suppress its superconductivity at low temperatures.


This composite image offers a glimpse inside the custom-designed molecular beam epitaxy system that the Brookhaven physicists use to create single-crystal thin films for studying the properties of superconducting cuprates.

Credit: Brookhaven National Laboratory

"The most pressing problem in condensed matter physics is understanding the mechanism of superconductivity in cuprates because at ambient pressure they become superconducting at the highest temperature of any currently known material," said physicist Ivan Bozovic, who leads the Oxide Molecular Beam Epitaxy Group at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and who is a coauthor of the Aug. 3 Science paper reporting the discovery. "This new result--that the electrical resistivity of LSCO scales linearly with magnetic field strength at low temperatures--provides further evidence that high-temperature superconductors do not behave like ordinary metals or superconductors. Once we can come up with a theory to explain their unusual behavior, we will know whether and where to search for superconductors that can carry large amounts of electrical current at higher temperatures, and perhaps even at room temperature."

Cuprates such as LSCO are normally insulators. Only when they are cooled to some hundred degrees below zero and the concentrations of their chemical composition are modified (a process called doping) to a make them metallic can their mobile electrons pair up to form a "superfluid" that flows without resistance. Scientists hope that understanding how cuprates achieve this amazing feat will enable them to develop room-temperature superconductors, which would make energy generation and delivery significantly more efficient and less expensive.

In 2016, Bozovic's group reported that LSCO's superconducting state is nothing like the one explained by the generally accepted theory of classical superconductivity; it depends on the number of electron pairs in a given volume rather than the strength of the electron pairing interaction. In a follow-up experiment published the following year, they obtained another puzzling result: when LSCO is in its non-superconducting (normal, or "metallic") state, its electrons do not behave as a liquid, as would be expected from the standard understanding of metals.

"The condensed matter physics community has been divided about this most basic question: do the behaviors of cuprates fall within existing theories for superconductors and metals, or are there profoundly different physical principles involved?" said Bozovic.

Continuing this comprehensive multipart study that began in 2005, Bozovic's group and collaborators have now found additional evidence to support the latter idea that the existing theories are incomplete. In other words, it is possible that these theories do not encompass every known material. Maybe there are two different types of metals and superconductors, for example.

"This study points to another property of the strange metallic state in the cuprates that is not typical of metals: linear magnetoresistance at very high magnetic fields," said Bozovic. "At low temperatures where the superconducting state is suppressed, the electrical resistivity of LSCO scales linearly (in a straight line) with the magnetic field; in metals, this relationship is quadratic (forms a parabola)."

In order to study magnetoresistance, Bozovic and group members Anthony Bollinger, Xi He, and Jie Wu first had to create flawless single-crystal thin films of LSCO near its optimal doping level. They used a technique called molecular beam epitaxy, in which separate beams containing atoms of the different chemical elements are fired onto a heated single-crystal substrate. When the atoms land on the substrate surface, they condense and slowly grow into ultra-thin layers, building a single atomic layer at a time. The growth of the crystal occurs in highly controlled conditions of ultra-high vacuum to ensure that the samples do not get contaminated.

"Brookhaven Lab's key contribution to this study is this material synthesis platform," said Bozovic. "It allows us to tailor the chemical composition of the films for different studies and provides the foundation for us to observe the true properties of superconducting materials, as opposed to properties induced by sample defects or impurities."

The scientists then patterned the thin films onto strips containing voltage leads so that the amount of electrical current flowing through LSCO under an applied magnetic field could be measured.

They conducted initial magnetoresistivity measurements with two 9 Tesla magnets at Brookhaven Lab--for reference, the strength of the magnets used in today's magnetic resonance imaging (MRI) machines are typically up to 3 Tesla. Then, they brought their best samples (those with the best structural and transport qualities) to the Pulsed Field Facility. Located at DOE's Los Alamos National Laboratory, this international user facility is part of the National High Magnetic Field Laboratory, which houses some of the strongest magnets in the world. Scientists at the Pulsed Field Facility placed the samples in an 80 Tesla pulsed magnet, powered by quick pulses, or shots, of electrical current. The magnet produces such large magnetic fields that it cannot be energized for more than a very short period of time (microseconds to a fraction of a second) without destroying itself.

"This large magnet, which is the size of a room and draws the electricity of a small city, is the only such installation on this continent," said Bozovic. "We only get access to it once a year if we are lucky, so we chose our best samples to study."

In October, the scientists will get access to a stronger (90 Tesla) magnet, which they will use to collect additional magnetoresistance data to see if the linear relationship still holds.

"While I do not expect to see something different, this higher field strength will allow us to expand the range of doping levels at which we can suppress superconductivity," said Bozovic. "Collecting more data over a broader range of chemical compositions will help theorists formulate the ultimate theory of high-temperature superconductivity in cuprates."

In the next year, Bozovic and the other physicists will collaborate with theorists to interpret the experimental data.

"It appears that the strongly correlated motion of electrons is behind the linear relationship we observed," said Bozovic. "There are various ideas of how to explain this behavior, but at this point, I would not single out any of them."

###

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

Media Contact

Ariana Tantillo
atantillo@bnl.gov
631-344-2347

 @brookhavenlab

http://www.bnl.gov 

Ariana Tantillo | EurekAlert!
Further information:
https://www.bnl.gov/newsroom/news.php?a=113033
http://dx.doi.org/10.1126/science.aan3178

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>