Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond the limits - the potential of new large-scale laser facilities

07.01.2011
Just in time before the start of realization of the three pillars of the European ELI project (Extreme Light Infrastructure: ultra-high power laser systems with special emphasis on Beamlines in Prague, Attosecond Science in Szeged and Nuclear Physics in Bucharest-Magurele), Prof. Gerard Mourou and Prof. Toshiki Tajima have evaluated the potential of large-scale laser facilities with respect to the production of ultra-intense ultra-short pulses of coherent high-energy X-ray and y-ray beams in the current issue of "Science".
Gerard Mourou is Professor at the Ecole Polytechnique and Director of the Institut de Lumière Extrême in Palaiseau and inventor of the chirped pulse amplification technique, an important milestone in high-power laser technology.

Toshiki Tajima, professor at the Ludwig-Maximilian-University (LMU) Munich and member of the DFG cluster of excellence "Munich-Centre for Advanced Photonics" (MAP), is the "father" of laser-driven particle acceleration. Both work together in coordinating the ELI project.

In their article the two experts show that not only are short laser pulses a method to create very high intensities at still manageable pulse energies, but also the reverse is true: high intensities are required in order to produce very short pulses. The key point is that shorter pulses need a broader spectrum before compression. A milestone was the creation of 2.6 fs (2.6-15 seconds) pulses, corresponding to a single wavelength at 800 nm. Shorter pulses require higher frequencies that can be produced by high-harmonic generation in a gas jet.

This technique allowed Prof. Ferenc Krausz (LMU, Max-Planck Institute of Quantum Optics) to achieve a world record of laser pulses with a duration of only 80 attoseconds (10-18 seconds). Still shorter pulses demand higher intensities. In the high-energy relativistic regime beyond 10-18 W/cm2, electrons oscillate at the target surface with changing mass according to their varying velocity. This "oscillating mirror" modulates reflected laser light and such creates very high harmonics (3200th order experimentally verified).

The authors showed in theory and simulation that by shaping relativistic mirrors (i.e. very dense bunches of electrons) laser intensities of 1022 W/cm2 could produce few-attosecond backscattered X-ray or y-ray pulses. High-density relativistic flying mirrors could be produced by imploding spherical targets with very intense laser pulses. By backscattering laser light from such mirrors, laser intensities of 1024 W/cm2 could ultimately produce even y-ray pulses of approx. 100 yoctoseconds (10-22 s) duration. In this way ELI class laser systems have the potential to create the shortest coherent pulses, suitable to probe the vacuum and take a look into the atomic nucleus. Thus the future of high-field science and that of ultrafast optical science are now merged. It is anticipated that there will be an emerging brand new cross-fertilized interdiscipline, such as the ultrafast streaking of vacuum structure going one step beyond atomic streaking.

DOI:10.1126/science.1200292

Christine Kortenbruck | idw
Further information:
http://www.munich.photonics.de

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>