Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightwave controlled nanoscale electron acceleration sets the pace

30.10.2017

Extremely short electron bunches are key to many new applications including ultrafast electron microscopy and table-top free-electron lasers. A german team of physicists from Rostock University, the Max Born Institute in Berlin, the Ludwig-Maxmilians-Universität Munich, and the Max Planck Institute of Quantum Optics in Garching has now shown how electrons can be accelerated in an extreme and well-controlled way with laser light, while crossing a silver particle of just a few nanometers.

Of particular importance for potential applications is the ability to manipulate the acceleration process, known as a swing-by maneuver from space travel, with the light waveform. This could facilitate an all-optical generation of attosecond electron pulses.


The waveform-controlled laser pulse creates a plasmon-enhanced near-field that drives the forward acceleration of an electron during its passage through the nanometer-sized metal cluster.


Prof. Thomas Fennel from the University of Rostock and the Max Born Institute in Berlin.

When metal clusters, small nanoparticles consisting of just a few thousand atoms, are exposed to intense laser light, electrons inside the particle are excited to a swinging collective motion. The electron cloud’s motion, a plasmon, can be excited resonantly with light of a suitable color leading to very high amplitudes and an enhanced electric field inside the cluster.

In the experiment, which was conducted at the Institute of Physics in Rostock, a team of researches around Prof. Thomas Fennel has now deliberately exploited this enhanced near-field. With so-called two-color laser pulses the scientists tailored the plasmonic field via the waveform of the light field.

This led to a controlled slingshot-type acceleration of electrons traversing the nanoparticle within only one optical cycle. These experimental results, together with their interpretation by a theoretical model, were now published in the Journal Nature Communications.

In their study, the researchers demonstrated that electronic processes in clusters can be controlled with the waveform of laser light. The few nanometer-sized clusters serve as ideal experimental and theoretical model systems for investigating new physical effects in the light matter interaction of nanostructures. “In our experiment we could show that electrons can gain energies of up to one kiloelectron volt within just one optical cycle in the nanoaccelerator.

This corresponds to an enhancement of more than one order of magnitude with respect to the strong-field ionization of atoms.”, describes Dr. Josef Tiggesbäumker from the Institute of Physics in Rostock, who together with first author Dr. Johannes Passig from the team around cluster physicist Prof. Karl-Heinz Meiwes-Broer has developed the setup for the experiments.

„The acceleration of electrons via near-field-assisted forward scattering can be switched with attosecond precision (1 attosecond = 1 billionth of a billionth of a second) by tailoring the light waveform.“, adds Prof. Matthias Kling from the Ludwig-Maximilians-Universität Munich and the Max Planck Institute of Quantum Optics in Garching, who provided the technology for the generation of the phase-controlled laser pulses.

„The control with just and only the laser light paves new ways for the intensely researched area of light-based particle acceleration”, sums up Fennel from the University Rostock and the Max Born Institute in Berlin, who developed the concept for the study. The researchers plan to realize the acceleration principle in multiple stages in the future to investigate its potential applications in laser-driven grating accelerators.

Original publication:
Johannes Passig, Sergey Zherebtsov, Robert Irsig, Mathias Arbeiter, Christian Peltz, Sebastian Göde,Slawomir Skruszewicz, Karl-Heinz Meiwes-Broer, Josef Tiggesbäumker, Matthias F. Kling, Thomas Fennel
Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters
Nature Communications 8, 1181 (2017), DOI: 10.1038/s41467-017-01286-w
http://dx.doi.org/10.1038/s41467-017-01286-w

For further information, please contact:
Prof. Dr. Thomas Fennel
Theoretical Cluster Physics and Nanophotonics
Institute of Physics, Rostock University
Albert-Einstein-Str. 23, 18059 Rostock, Germany
Phone: +49-381-498 6815, E-Mail: thomas.fennel@uni-rostock.de
and
Max Born Institute
Max-Born-Straße 2, 12489 Berlin, Germany
Phone: +49-030-6392 1245, E-Mail: fennel@mbi-berlin.de

Prof. Dr. Matthias Kling
Ultrafast Nanophotonics, Laboratory for Attosecond Physics
Department of Physics, Ludwig-Maximilians-Universität Munich &
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49-89-32905-234, E-Mail: matthias.kling@physik.uni-munechen.de

PD. Dr. Josef Tiggesbäumker
Clusters and Nanostructures
Institute of Physics, Rostock University
Albert-Einstein-Str. 23, 18059 Rostock, Germany
Phone: +49 381 498-6805, E-Mail: josef.tiggesbäumker@uni-rostock.de

Ingrid Rieck | Universität Rostock
Further information:
http://www.uni-rostock.de

Further reports about: Electrons Max Planck Institute laser light laser pulses nanoscale physics waveform

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>