Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightest exoplanet imaged so far?

03.06.2013
Although nearly a thousand exoplanets have been detected indirectly — most using the radial velocity or transit methods [1] — and many more candidates await confirmation, only a dozen exoplanets have been directly imaged.
Nine years after ESO's Very Large Telescope captured the first image of an exoplanet, the planetary companion to the brown dwarf 2M1207 (eso0428 - http://www.eso.org/

This image from ESO's Very Large Telescope (VLT) shows the newly discovered planet HD95086 b, next to its parent star. The observations were made using NACO, the adaptative optics instrument for the VLT in infrared light, and using a technique called differential imaging, which improves the contrast between the planet and its dazzling host star. The star itself has been removed from the picture during processing to enhance the view of the faint exoplanet and its position is marked. The exoplanet appears at the lower left. The blue circle is the size of the orbit of Neptune in the Solar System. The star HD 95086 has similar properties to Beta Pictoris and HR 8799 around which giant planets have previously been imaged at separations between 8 and 68 astronomical units. These stars are all young, more massive than the Sun, and surrounded by a debris disc.

Credit: ESO/J. Rameau

public/news/eso0428/), the same team has caught on camera what is probably the lightest of these objects so far [2][3].

"Direct imaging of planets is an extremely challenging technique that requires the most advanced instruments, whether ground-based or in space," says Julien Rameau (Institut de Planetologie et d'Astrophysique de Grenoble, France), first author of the paper announcing the discovery. "Only a few planets have been directly observed so far, making every single discovery an important milestone on the road to understanding giant planets and how they form."

In the new observations, the likely planet appears as a faint but clear dot close to the star HD 95086. A later observation also showed that it was slowly moving along with the star across the sky. This suggests that the object, which has been designated HD 95086 b, is in orbit around the star. Its brightness also indicates that it has a predicted mass of only four to five times that of Jupiter.

The team used NACO, the adaptive optics instrument mounted on one of the 8.2-metre Unit Telescopes of ESO's Very Large Telescope (VLT). This instrument allows astronomers to remove most of the blurring effects of the atmosphere and obtain very sharp images. The observations were made using infrared light and a technique called differential imaging, which improves the contrast between the planet and dazzling host star.

The newly discovered planet orbits the young star HD 95086 at a distance of around 56 times the distance from the Earth to the Sun, twice the Sun–Neptune distance. The star itself is a little more massive than the Sun and is surrounded by a debris disc. These properties allowed astronomers to identify it as an ideal candidate to harbour young massive planets. The whole system lies some 300 light-years away from us.

The youth of this star, just 10 to 17 million years, leads astronomers to believe that this new planet probably formed within the gaseous and dusty disc that surrounds the star. "Its current location raises questions about its formation process. It either grew by assembling the rocks that form the solid core and then slowly accumulated gas from the environment to form the heavy atmosphere, or started forming from a gaseous clump that arose from gravitational instabilities in the disc." explains Anne-Marie Lagrange, another team member. "Interactions between the planet and the disc itself or with other planets may have also moved the planet from where it was born."

Another team member, Gaël Chauvin, concludes, "The brightness of the star gives HD 95086 b an estimated surface temperature of about 700 degrees Celsius. This is cool enough for water vapour and possibly methane to exist in its atmosphere. It will be a great object to study with the forthcoming SPHERE instrument on the VLT. Maybe it can also reveal inner planets in the system — if they exist." [4]

Notes

[1] Astronomers have already confirmed the existence of nearly a thousand planets orbiting stars other than the Sun. Almost all were found using indirect methods that could detect the effects of the planets on their parent stars — the dips of brightness produced when planets crossed in front of them (the transit method), or the wobbling caused by the gravitational pull of planets in their orbits (the radial velocity method). So far, only a dozen exoplanets have been directly observed.

[2] Fomalhaut b may have a lower mass, but its brightness seems to be contaminated by light reflected from the surrounding dust, making the precise determination of its mass uncertain.

[3] This team also has observed an exoplanet around the star Beta Pictoris (eso1024 - http://www.eso.org/public/news/eso1024/), as well as several others.

[4] SPHERE is a second generation adaptive optics instrument that will be installed on the VLT in late 2013.

More information

This research was presented in a paper entitled, "Discovery of a probable 4-5 Jupiter-mass exoplanet to HD95086 by direct-imaging", to appear in the journal Astrophysical Journal Letters.

The team is composed of J. Rameau (Institut de Planetologie et d'Astrophysique de Grenoble France [IPAG]), G. Chauvin (IPAG), A.-M. Lagrange (IPAG), A. Boccaletti (Observatoire de Paris, France; University Pierre et Marie Curie Paris 6 and University Denis Diderot Paris 7, Meudon, France), S. P. Quanz (Institute for Astronomy, ETH Zurich, Switzerland), M. Bonnefoy (Max Planck Instiute für Astronomy, Heidelberg, Germany [MPIA]), J. H. Girard (ESO, Santiago, Chile), P. Delorme (IPAG), S. Desidera (INAF–Osservatorio Astronomico di Padova, Italy), H. Klahr (MPIA), C. Mordasini (MPIA), C. Dumas (ESO, Santiago, Chile), M. Bonavita (INAF–Osservatorio Astronomico di Padova, Italy), Tiffany Meshkat (Leiden Observatory, the Netherlands), Vanessa Bailey (Univ. of Arizona, USA), and Matthew Kenworthy (Leiden Observatory, The Netherlands).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

Research paper - http://www.eso.org/public/archives/releases/sciencepapers/eso1324/eso1324a.pdf

Photos of the VLT - http://www.eso.org/public/images/archive/category/paranal/

Images taken with NACO - http://www.eso.org/public/images/archive/search/?adv=&instrument=9

Contacts

Julien Rameau
Institut de Planetologie et d'Astrophysique de GrenobleFrance
Tel: +33 476 635 730
Email: julien.rameau@obs.ujf-grenoble.fr
Gaël Chauvin
Institut de Planetologie et d'Astrophysique de GrenobleFrance
Tel: +33 476 635 886
Email: gael.chauvin@obs.ujf-grenoble.fr
Anne-Marie Lagrange
Institut de Planetologie et d'Astrophysique de Grenoble
France
Tel: + 33 476 514 203
Email: anne-marie.lagrange@obs.ujf-grenoble.fr
Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Richard Hook | EurekAlert!
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>