Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light triggers gold in unexpected way

03.12.2018

Rice University lab discovers mechanism to control output of a nanoscale antenna

Rice University researchers have discovered a fundamentally different form of light-matter interaction in their experiments with gold nanoparticles.


Circularly polarized light delivered at a particular angle to C-shaped gold nanoparticles produced a plasmonic response unlike any discovered before, according to Rice University researchers. When the incident-polarized light was switched from left-handed (blue) to right-handed (green) and back, the light from the plasmons switched almost completely on and off.

Credit: Link Research Group/Rice University

They weren't looking for it, but students in the lab of Rice chemist Stephan Link found that exciting the microscopic particles just right produced a near-perfect modulation of the light they scatter.

The discovery may become useful in the development of next-generation, ultrasmall optical components for computers and antennas.

A paper about the research appears in the American Chemical Society journal ACS Nano.

The work springs from the complicated interactions between light and plasmonic metal particles that absorb and scatter light extremely efficiently. Plasmons are quasiparticles, collective excitations that move in waves on the surface of some metals when excited by light.

The Rice researchers were studying pinwheel-like plasmonic structures of C-shaped gold nanoparticles to see how they responded to circularly polarized light and its rotating electric field, especially when the handedness, or the direction of rotation of the polarization, was reversed. They then decided to study individual particles.

"We stripped it back into the simplest possible system where we only had a single arm of the pinwheel, with a single incident light direction," said Lauren McCarthy, a graduate student in the Link lab. "We weren't expecting to see anything. It was a complete surprise when I put this sample on the microscope and rotated my polarization from left- to right-handed. I was like, 'Are these turning on and off?' That's not supposed to happen."

She and co-lead author Kyle Smith, a recent Rice alumnus, had to go deep to figure out why they saw this "giant modulation."

At the start, they knew shining polarized light at a particular angle onto the surface of their sample of gold nanoparticles attached to a glass substrate would create an evanescent field, an oscillating electromagnetic wave that rides the surface of the glass and traps the light like parallel mirrors, an effect known as a total internal reflection.

They also knew that circularly polarized light is composed of transverse waves. Transverse waves are perpendicular to the direction the light is moving and can be used to control the particle's visible plasmonic output. But when the light is confined, longitudinal waves also occur. Where transverse waves move up and down and side to side, longitudinal waves look something like blobs being pumped through a pipe (as illustrated by shaking a Slinky).

They discovered the plasmonic response of the C-shaped gold nanoparticles depends on the out-of-phase interactions between both transverse and longitudinal waves in the evanescent field.

For the pinwheel, the researchers found they could change the intensity of the light output by as much as 50 percent by simply changing the handedness of the circularly polarized light input, thus changing the relative phase between the transverse and longitudinal waves.

When they broke the experiment down to individual, C-shaped gold nanoparticles, they found the shape was important to the effect. Changing the handedness of the polarized input caused the particles to almost completely turn on and off.

Simulations of the effect by Rice physicist Peter Nordlander and his team confirmed the explanation for what the researchers observed.

"We knew we had an evanescent field and we knew it could be doing something different, but we didn't know exactly what," McCarthy said. "That didn't become clear to us until we got the simulations done, telling us what the light was actually exciting in the particles, and seeing that it actually matches up with what the evanescent field looks like.

"It led to our realization that this can't be explained by how light normally operates," she said. "We had to adjust our understanding of how light can interact with these sorts of structures."

The shape of the nanoparticle triggers the orientation of three dipoles (concentrations of positive and negative charge) on the particles, McCarthy said.

"The fact that the half-ring has a 100-nanometer radius of curvature means the entire structure takes up half a wavelength of light," she said. "We think that's important for exciting the dipoles in this particular orientation."

The simulations showed that reversing the incident-polarized light handedness and throwing the waves out of phase reversed the direction of the center dipole, dramatically reducing the ability of the half-ring to scatter light under one-incident handedness. The polarization of the evanescent field then explains the almost complete turning on and off effect of the C-shaped structures.

"Interestingly, we have in a way come full circle with this work," Link said. "Flat metal surfaces also support surface plasmons like nanoparticles, but they can only be excited with evanescent waves and do not scatter into the far field. Here we found that the excitation of specifically shaped nanoparticles using evanescent waves produces plasmons with scattering properties that are different from those excited with free-space light."

###

David Ruth 713-348-6327 david@rice.edu

Mike Williams 713-348-6728 mikewilliams@rice.edu

Co-authors of the paper are Rice assistant research professor Alessandro Alabastri, postdoctoral fellow Luca Bursi and alumnus Wei-Shun Chang. Link is a professor of chemistry and of electrical and computer engineering. Nordlander is a professor of physics and astronomy, of electrical and computer engineering and of materials science and nanoengineering. Link and Nordlander are members of Rice's Laboratory for Nanophotonics.

The Robert A. Welch Foundation and the National Science Foundation supported the research.

Read the abstract at https://pubs.acs.org/doi/10.1021/acsnano.8b07060.

This news release can be found online at https://news.rice.edu/2018/11/29/light-triggers-gold-in-unexpected-way/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Link Research Group: http://slink.rice.edu

Nordlander Nanophotonics Group: http://nordlander.rice.edu

Wiess School of Natural Sciences: https://naturalsciences.rice.edu

Images for download:

https://news-network.rice.edu/news/files/2018/11/1203_POLARIZE-1-WEB-2gx76br.jpg

Rice University researchers studying the effect of light on pinwheels (left) and single C-shaped (right) gold nanoparticles have found an unknown effect on single particles. Stimulating the particles just right produced a near-perfect modulation of the light they scatter via their plasmonic response. The discovery may become useful in the development of chips for next-generation optical components for computers and antennas. (Credit: Link Research Group/Rice University)

https://news-network.rice.edu/news/files/2018/11/1203_POLARIZE-2-WEB-2f3rpn0.jpg

Circularly polarized light delivered at a particular angle to C-shaped gold nanoparticles produced a plasmonic response unlike any discovered before, according to Rice University researchers. When the incident-polarized light was switched from left-handed (blue) to right-handed (green) and back, the light from the plasmons switched almost completely on and off. (Credit: Link Research Group/Rice University)

https://news-network.rice.edu/news/files/2018/11/1203_POLARIZE-3-WEB-29pw029.jpg

As seen under the objective lens of a microscope, Rice University researchers discovered that circularly polarized light -- right-handed circularly polarized (RCP) is shown here -- had the ability to dramatically modify the plasmonic output of C-shaped gold nanoparticles. The light input triggered the modification by shifting the phase relationship of transverse and longitudinal waves in an evanescent field exciting the particle. That in turn controlled the level of plasmonic response. The letter k represents the direction of light input on the particle after it passes through a prism. (Credit: Link Research Group/Rice University)

https://news-network.rice.edu/news/files/2018/11/1203_POLARIZE-4-WEB-2222blk.jpg

Rice University graduate student Lauren McCarthy adjusts the polarizer she used to discover a fundamentally different form of light-matter interaction in experiments with gold nanoparticles. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

More articles from Physics and Astronomy:

nachricht To image leaky atmosphere, NASA rocket team heads north
03.12.2018 | NASA/Goddard Space Flight Center

nachricht The force of the vacuum
03.12.2018 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

Im Focus: A golden age for particle analysis

Process engineers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a method which allows the size and shape of nanoparticles in dispersions to be determined considerably quicker than ever before. Based on gold nanorods, they demonstrated how length and diameter distributions can be measured accurately in just one step instead of the complicated series of electron microscopic images which have been needed up until now. Nanoparticles from precious metals are used, for example, as catalysts and contrast agents for diagnosing cancer. The results have been published in the renowned journal Nature Communications (doi: 10.1038/s41467-018-07366-9).

Even in the Middle Ages, gold particles were used to create vibrant red and blue colours, for example to illustrate biblical scenes in stained glass windows....

Im Focus: Successful second round of experiments with Wendelstein 7-X

The experiments conducted from July until November at the Wendelstein 7-X fusion device at the Max Planck Institute for Plasma Physics (IPP) in Greifswald have achieved higher values for the density and the energy content of the plasma and long discharge times of up to 100 seconds – record results for devices of the stellarator type. Meanwhile, the next round of the step-by-step upgrading of Wendelstein 7-X has begun. It is to equip the device for greater heating power and longer discharges. Wendelstein 7-X, the world’s largest fusion device of the stellarator type, is to investigate the suitability of this configuration for use in a power plant.

During the course of the step-by-step upgrading of Wendelstein 7-X, the plasma vessel was fitted with inner cladding since September of last year.

Im Focus: New process discovered: Mere sunlight can be used to eradicate pollutants in water

Advances in environmental technology: You don’t need complex filters and laser systems to destroy persistent pollutants in water. Chemists at Martin Luther University Halle-Wittenberg (MLU) have developed a new process that works using mere sunlight. The process is so simple that it can even be conducted outdoors under the most basic conditions. The chemists present their research in the journal “Chemistry - a European Journal”.

The chemists at MLU rely on electrons moving freely in water, so-called hydrated electrons, to degrade dissolved pollutants.

Im Focus: Ultracold quantum mix

The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise hardly accessible. A team led by the Innsbruck physicist Francesca Ferlaino has now succeeded for the first time in mixing quantum gases of the strongly magnetic elements Erbium and Dysprosium and creating a dipolar quantum mixture.

Only a few years ago it seemed unfeasible to extend the techniques of atom manipulation and deep cooling in the ultracold regime to many-valence-electron...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

Top-class programme at the ROS-Industrial Conference 2018

23.11.2018 | Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

 
Latest News

Scientists reveal substantial water loss in global landlocked regions

03.12.2018 | Earth Sciences

To image leaky atmosphere, NASA rocket team heads north

03.12.2018 | Physics and Astronomy

The force of the vacuum

03.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>