Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light sculpts three-dimensional crystals in nonlinear optical materials

04.03.2010
Scientists from the University of Muenster and the Indian Institute of Technology have experimentally demonstrated for the first time the creation of 3D photonic crystals and quasicrystals with a plethora of geometries and forms purely by the action of light in a nonlinear optical material, which allows reconfigurable as well as scalable crystal and quasicrystal formation.

Engineering and guiding light by artificial structures is one of the most actual questions in photonics, allowing optical information processing to open new horizons for waveguiding, storing, and processing light.

Three-dimensional structures have been a challenge up to now, either due to the complex formation method or the lack of appropriate material. Especially the creation complex quasi crystals that have a number of advantages features as e.g. better control of the transmission features by larger und more homogeneously distributed band gaps, is an actual challenge.

A combined effort of researchers from "Institut für Angewandte Physik" and "Center for Nonlinear Science", Westfaelische Wilhelms-Universitaet Muenster (WWU), Germany and Department of Physics, Indian Institute of Technology Delhi, India, shines the way for a versatile approach to form complex 3D quasi-crystallographic photonic crystals structures formed by light. The researchers have experimentally demonstrated for the first time the creation of 3D photonic crystals and quasicrystals with a plethora of geometries and forms purely by the action of light in a nonlinear optical - so-called photorefractive- material, which allows reconfigurable as well as scalable crystal and quasicrystal formation.

"Creating photonic crystals by light itself is a wonderful example on how light matter interaction can be exploited" said Prof. Dr. Cornelia Denz, Director of the Institute for Applied Physics and Leader of the Center for Nonlinear Science, WWU, who supervised the research team. "Novel three-dimensional photonic structures with reconfigurable features for photonic device integration is a hot topic among the research community. Exploiting the principle of 'light is controlling light', our complex three-dimensional photonic quasicrystals will allow forming a reconfigurable platform to investigate advanced nonlinear light-matter interactions in higher spatial dimensions" emphasized Prof. Denz.

By modifying a laser light beam by a spatial light modulator, and subsequently sculting a nonlinear optical material with this light structure, the research team could easily generate artificial refractive index photonic structures. Typically, neither any additional optical component nor manipulation of the experimental setup is involved while reconfiguring from one structure to another.

"The success of this versatile experimental innovation paves the way to the mass production of scalable large area quasi-crystallographic photonic templates. This in turn points to the realization of complex artificial photonic bandgap structures for promising applications as e.g. highly efficient flat-panel displays with customized angular emission," commented Dr. Joby Joseph, Associate Professor of Physics, Photonics Group, Indian Institute of Technology Delhi, India, who coordinated the collaborative efforts from India.

The researchers elaborate their work in the journal "Advanced Materials" (Vol.22, No.3, pp.356-360; DOI: 10.1002/adma.200901792) where Jolly Xavier as the lead author together with Martin Boguslawski, Patrick Rose, Dr. Joby Joseph, and Prof. Dr. Cornelia Denz, describe their research details. The research was partially funded by German Academic Exchange Service.

Dr. Christina Heimken | idw
Further information:
http://www3.interscience.wiley.com/cgi-bin/fulltext/122596631/PDFSTART
http://www.uni-muenster.de/Physik.AP/Denz/

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>