Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light provides spin

19.09.2018

Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have proven that incoming light causes the electrons in warm perovskites to rotate thus influencing the direction of the flow of electrical current. They have thus found the key to an important characteristic of these crystals, which could play an important role in the development of new solar cells.

Efficiency from spinning electrons


The sun plays an important role in the use of renewable energy sources. Its radiation energy provides heat and the light it provides can be converted into electricity thanks to photovoltaics. Perovskites, which are crystalline compounds that can be simply manufactured using chemical processes, have been considered a promising means of using the power of sunlight cost effectively for several years now. Under laboratory conditions, prototypes have achieved surprising levels of efficiency.

There is little knowledge about precisely why perovskites are so powerful. ‘Two factors are decisive for generating electrical energy cost-efficiently from sunlight’, says Dr. Daniel Niesner from the Chair of Solid State Physics at FAU. ‘One the one hand, the light must excite as many electrons as possible in a layer that’s as thin as possible. On the other, the electrons must be able to flow as freely as possible to the electrodes that pick up the current.’

Researchers suspect that perovskites make particularly good use of the rotation of electrons for efficient current flow. ‘Each electron has ‘spin’, similar to the intrinsic rotation of a billiard ball’, explains Niesner. ‘As is the case with billiard balls, where left-hand or right-hand spin when they are hit with the cue leads to a curved path on the table, scientists have suspected that rotation and forward movement in electrons in perovskites could also be linked.’

Orderly atomic structure

Physicists at FAU in Erlangen have now confirmed this suspicion for the first time. In their experiments, they used a laser whose light also has spin or a direction of rotation. The result: If a crystal is exposed to light with a left-hand spin, the electrons move to the left. If the direction of the light is reversed, the direction of the flow of electrons also reverses. ‘The experiments clearly demonstrate that the direction of rotation of the electrons and the direction of flow of current are linked.’

Up to now, scientists presumed that the atomic structure of perovskites was too ‘orderly’ for such behaviour. In actual fact, experiments with cooled perovskite crystals show only a very weak link between the direction of rotation of the electrons and the direction of current flow. ‘This changes, however, when the crystals are heated to room temperature because the movement of the atoms leads to fluctuating deviations of the highly-ordered structure’, says Nieser.

‘The heat enables the crystals of perovskite to link the direction of rotation and flow of the electrons. A ‘normal’ crystal couldn’t do that.’

The discovery of the connection between heat and spin in electrons means that the FAU researchers have uncovered a vital aspect of the unusual flow of current in perovskites. Their work could contribute to improving the understanding of the high energy efficiency of these crystals and to developing new materials for photovoltaics in the future.

Wissenschaftliche Ansprechpartner:

Further information
Dr. Daniel Niesner
Phone: +49 9131 8528403
daniel.niesner@fau.de

Originalpublikation:

The results have now been published in the renowned journal ‘Proceedings of the National Academy of Sciences’ (doi: 10.1073/pnas.1805422115 – ‘Structural fluctuations cause spin-split states in tetragonal (CH3NH3)PbI3: Experimental evidence from circular photogalvanic effect’, ‘Proceedings of the National Academy of Sciences’).

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Physics and Astronomy:

nachricht JILA researchers make coldest quantum gas of molecules
22.02.2019 | National Institute of Standards and Technology (NIST)

nachricht (Re)solving the jet/cocoon riddle of a gravitational wave event
22.02.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>